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Wave Slow-down Using Anisotropic Materials 
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A1,2:Anisotropic dielectrics 
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Slow-group velocity mode @ SIP  

Corresponding K-ω diagrams 
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Experimental Validation of Wave Slow-Down 

In Volumetric Form In Printed Form 

Band edge

SIP
MPCs Free

Space

@ SIP: 7.2ns 0.18ns

Finite 9-unit-cell Printed MPC  

Finite 8-unit-cell Printed MPC  

4.40.440.1 
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@SIP: 96.1ns 
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0.33ns 

3.96 

0.44 

Measured Group Delay (ns) 

Finite 15-unit-cell Volumetric MPC  

Wave velocity 
reduction by a 
factor of  286  



Novel Slow-wave Structures and Antenna Designs  

Utilizing Slow Group Velocity Modes 
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Miniaturized Antennas w/ Optimal Gain  BW 
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Mode Profile at 
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DBE Antenna 
Element 

Printed Coupled Lines Emulating Slow Modes 

Gain Enhancement via Leaky-

waves 
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Remarkably Large Bandwidth for Thin Conformal 
Arrays 

71.75mm 

(0.06λ-1.4 λ) 

εr = 4 

23.25mm 

(0.02λ-0.45λ) 

Bowtie Array with FSS in substrate 

23.25mm 

(0.02λ-0.45λ) 

Infinite Unit Cell 

270-5850 MHz (22:1) 

•22:1 BW 

•Low profile 

•Efficiciency. ≥ 69% 

•Excellent polarization 

purity (AR ≥ 43 dB) 

Interweaved Spiral Array (ISPA) w/ 

FSS in Substrate 

Infinite Unit Cell 

 FSS in substrate:  

 Rs  = 25Ω/□ 
23.25mm 

(0.014λ-0.5λ) 

71. 5mm 

(0.04λ-1.5 λ) 

175-6350 MHz (36:1) 

FSS in substrate: 

Rs  = 25Ω/□ 

•36:1 BW 

•Low profile 

•Efficiency ≥ 63% 

•Circular polarization 

εr = 4 
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Integrated UWB Balun and  

Demonstrated Meta-structured Array Benefits 

6 

New thin Metastructured Array is  

• Thinner 

• Much greater bandwidth  

• Has integrated balun and feed 

     (several balun/feed options) 

• Lightweight 600-4500MHz 

• Military datalinks:  

• Link-16, DWTS, DDL, TTNT, TACAN, etc. 

• Almost all commercial telecom waveforms 

• Wideband SAR, TWRI 

Measured Metastructured Aperture  

•Much thinner integrated printed balun (trivial cost); 

as thin as /15 at 600MHz, lowest operational 

frequency.  

•  Measured array was 8x8 and had 7.3:1 

VSWR<2 bandwidth with no FSS in substrate. 

• Aperture: 9.4”x9.4” (89in2) 

• Scanning verified to 60o with no sidelobes or 

surface waves 

• Beam steering over entire band (digital or optimal 

beam formers required). 

 



Nonreciprocal Leaky Wave Antenna  

Using Coupled Microstrip Lines 
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l1=110, l2=120, w1=60, 

w2=20, w3=30, s1=105, 

s2=10,h=100, d=440(mils) 

• leaky/fast wave: |β-1/k0|<1 radiates 

Beam-steering capability 

without frequency 

modulation 

due to tunable dispersion 

properties with bias field 

strength, Hi 

• guided/slow wave: |β+1/k0|>1 does not radiate 

Unit-cell 
Dispersion Diagram 

Nonreciprocal Transmitting and Receiving Properties 



Traditional Slow-wave Structure  

for Travelling Wave Tubes 
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Cerenkov Maser: Dielectric Lined Cylindrical Waveguide 
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Slow-wave Structure 

RF signal, νp 

1)Microwave signal vp ≈electron velocity ve- 

Cherenkov Radiation Condition 
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*e and m are electron charge and mass.  
V0 =voltage applied to electron gun. 

Corresponding K-ω diagram 

2)Strong longitudinal E-field at waveguide center 

(TMz modes) for mode coupling 



Issues to be Addressed 

in Designing High-Power Microwave Devices 

Shortcomings: 

•Limited wave slow-down 

(depends on the filling ratio (a/b) 

and r) 

•Dielectric charging 

•Surface breakdown 

•Bulky design 

z 

y 

x 

Cerenkov Maser 
Advantages: 

•Simple geometry 

•Wider bandwidth 

•Tunable operation 

•Several MWs of output 

microwave power 

•Validated performance 

Solution 

•Purely metallic slow-wave metamaterial structures   

Dielectric filling ratio=a/b 

Additional wave slow-down (L) Metallic construction 

Goal: 

•Larger amplification (G0)  •Wide bandwidth •Smallest configuration (L) 

•Avoid 

charging 
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Possible Slow-wave Structures 

 for Travelling Wave Tubes 
Travelling Wave Tube with Periodic Slow-wave Liner 

Dielectric/Ferrite 

Corrugations 

Concentric Metallic Rings Metal Corrugations Coupled Transmission Lines 

on Dielectric 

Limited wave slow-down 

good for relativistic e-beams, ve-c 

Cherenkov Radiation in Periodic Media 

21

Electron 

particle 

ve- 

vp=c/n 

n=effective 

refractive 

index of the 
medium 

Helix Double Helix Ring-Bar Structure Coupled Cavities 
OR 

Enormous wave slow-down 

(good for slower e-beams, 0.1c<ve-<0.3c) 



Metallic Slow Wave Structures  

Based on Helical Waveguide 

 

Advantages of Helix WG 

•Considerable wave slow 

down. 

•Purely metallic 

construction. 

•Wide BW operation. 

Travelling Wave Tube 

Electron-beam bunching Field Amplification 

Operation Principle 

ve- =(eV0/m)1/2 

e and m are electron charge and mass. 

V0 =voltage applied to electron gun.  

Electron gun 

V0  

Gain-9.54+47.3CN  (dB) 
(* J. R. Pierce, Travelling Wave Tubes, NY: D.Van Nostrand 

Co, 1950) 
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N=number of wavelengths 

Needs to be as 

large as possible to 

obtain high gain. 



Key Performance Parameters  

for Helical Waveguides 
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Ez: Longitudinal field 

strength along z axis 

β:phase constant within 

WG 

P:net power flow along 

helix 

2)Interaction Impedance: K0=Ez
2/(2β2P) 

(*J. R. Pierce, Travelling Wave Tubes, NY: D.Van Nostrand Co, 1950) 
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double helix 

helix 

Need Larger K0 for 

stronger interaction 

with the e-beam 

•Double-helix allows for more energy transfer from the e-beam to the RF signal.  

1)Phase velocity of EM wave=electron velocity 
 vp= csinψ =  ve- =(eV0/m)1/2*   Ψ=cot-1(2πa/p) 

*e and m are electron charge and mass,  

V0 is the voltage applied to electron gun. 
 

 

 

 
 

 

 

Double- Helix 

a 
p 

a=2.375mm 

p=3.52mm 

p 

a 

Helix 

Strong 
transverse 
electric field! 

Need 

constant vp 

for wider BW 
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Double-Helix 

a 

p 

a=2.375mm 

p=3.52mm 

δ=0.15mm 

 

Simpler 

Ring-bar Structure 

•Easier to fabricate 

•Extra wave slow-down 

•Higher K0(Ω)larger gain 

Simplified Double-Helix : Ring-bar Structure 
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Normalized Phase &Group Velocity 

Double Helix 
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Ring-bar WG 

slower 
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a1=2.375mm 

a2=1.9mm 

 p=3.52mm 

δ=0.15mm 

 

a1 

p 

a2 

Ring-bar 

Inner Ring 

(Inductive coupling) 

δ 

Design 1: 

Double Ring-bar Structure for Miniaturization 

E-field profile 

Strong longitudinal field stronger coupling 

between the RF signal and e-beam 

Purely metallic construction 

Connected inner and outer 

rings (no charging or arcs) 

Inductive&capacitive coupling  

extra wave slow-down&miniaturization 
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Performance of Double Ring-bar Structure 

3 4 5 6 7 8 9 
0 

0.2 

0.4 

Frequency(GHz) 


 p

 /c
 

3 4 5 6 7 8 9 
0 

0.2 

0.4 

Frequency(GHz) 


 g

 /c
 

Phase & Group Velocities 

More dispersive 

(not desired) 

slower 

Ring-bar 

Double ring-bar 
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Interaction Impedance  

Larger K0 

Ring-bar 
Double ring-bar 

Ring-bar 

Double ring-bar Extra wave slow-down 

(0.18c<vp<0.32c) 

Larger K0 over the bandwidth 

(90Ω<K0<150 Ω) 

More dispersive (not desired) 

Operates between 3-7GHz 

(vp=0.25c±0.07c) 
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a2=1.9mm 

 p=3.52mm 

δ=0.15mm 
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Design 2:  

Modified Ring-bar Structure  

for Additional Miniaturization 

Jsurface Distribution (A/m) 

Longer current path  miniaturization 

E-field Distribution (V/m) 

Strong axial E-field  strong radiation 

Modified Ring-bar Structure 

Concentric ring-

bars increase 

the current path 

and leads to 

miniaturization. 



Performance Using Modified Ring-bar Structure 
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Modified ring-bar 

Interaction Impedance  

Larger K0 at low 

frequencies 

1.5 times more wave slow-down (0.18c<vp<0.25c) 
Larger K0 up to 5.8GHz(75Ω<K0<150 Ω) 

Similar dispersion  

Operates between 3-7GHz(vp=0.215c±0.035c) 



Further  Miniaturization  

Using CRLH Concept 

4-port circuit model
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n= - 1 n=0 
n=0 n=+1 

Normalized Wavenumber (K=kd) 

Strong Spectral 

Asymmetry 

but 

high frequency 

resonance 

K-w Diagram 

•Artificial anisotropy 

•Nonreciprocal behavior 

•Leaky-wave radiation from n=±1 harmonics 

•Leaky-wave radiation from n=0 mode 18 

β+1=β0
-+2π/d 

Leads to 

miniaturization 

by a factor of 3! 



Ohio State’s Research 

• Design slow wave structures using a variety of metamaterial liners  

 Purely metallic is our first focus 

 Material loading to be considered as well and examine their potential 

 Coupling, Power & Group Velocity consideration 

 

• Demonstration and applications   

 

-------------------Immediate Steps-------------------------------------- 

• Calculate interaction of SWS with e-beams using PIC code simulations. 

– E-beam bunching 

– Cherenkov radiation 

– Field amplification 

 

• Final prototype and performance evaluation for high power microwave 
source. 

– Output power 

– Power efficiency 

– Bandwidth of operation 

 

 

 


