
1 

EXPLORING DEGENERATE BAND EDGE MODE IN HPM 
TRAVELING TUBE 

Albuquerque, NM, August 21, 2012 

Alex Figotin and  Filippo Capolino 
University of California at Irvine 

 

 

 

 

Supported by AFOSR 



2 

MAIN OBJECTIVES FOR THE FIRST YEAR 

 

- Explore degenerate band edge (DBE) modes for multidimensional 
transmission lines and waveguides.  

- DBE mode with alternating axial electric field . 

-  Transmission line model of TWT that can account for significant feature 
of the amplification. 

- Suggested design of realistic waveguide for HPM TWT supporting DBE. 
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TWT with super amplification via the DBE mode. 
A, B, and C are three different waveguide sections with distinct transverse anisotropy.
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TWT with super amplification via DBE Mode 
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FROZEN MODE REGIMES 
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Each stationary point is associated with slow wave, but there are 
some fundamental differences between these three cases. 
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BASIC CHARACTERISTIC OF THE FROZEN MODE REGIME  

 

- The frozen mode regime is not a conventional resonance – it is not 
particularly sensitive to the shape and dimensions of the structure. 

- The frozen mode regime is much more robust than a common resonance. 

- The frozen mode regime persists even for relatively short pulses 
  (bandwidth advantage).  
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SLOW WAVE RESONANCE 
Slow-wave phenomena in 
bounded photonic crystals. 
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Uniform resonance cavity with 
photonic reflectors (DBR) 

Cavity 

Slow wave photonic resonator 
(no reflectors needed) 

Single mode 
photonic cavity 

Simplest uniform resonance 
cavity with metallic reflectors 
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Cavity Resonator   vs.   Slow Wave Resonator 
Examples of Plane-Parallel Open Resonators 
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Smoothed energy density 
distribution at frequency 
of the first resonance 

Transmission dispersion 
of periodic stacks with 
different N. 
ωg – the RBE frequency  
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Transmission band edge resonances near a RBE 
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Smoothed Field 
intensity distribution at  
frequency of first 
transmission resonance 

Giant transmission band edge resonances near a DBE 
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Transmission dispersion 
of periodic stacks with 
different N. 
ωd – the DBE frequency  
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13 Example: Slow-wave cavity resonance in periodic stacks   
                 composed of different number N of unit cells. 

Energy density distribution inside photonic crystal at frequency of slow wave resonance 

( ) 4Degenerate Band E   maxdge: IW W N∝

( ) 2Regular Band Ed   maxge: IW W N∝

A DBE slow-wave resonator composed of N layers performs similar to a standard 
RBE resonator composed of N 2 layers, which implies a huge size reduction. 



• The electric field in periodic structures (periodic except for an 
inter-element phase shift):  
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• A mode is expressed in term of Fourier series expansion, and 
thus represented as the superposition of Floquet spatial 
harmonics 
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• Slow/Fast (coupling with field produced by electron bunches)  
Slow Mode: all its Floquet wavenumbers are outside the “visible” region, or 
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Physical waves in open periodic structures 
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 Theory is complicated, but it can be summarized 
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Methods for complex mode calculations 

• Green’s function methods, combined with method of moments (MoM) 
• Mode matching (field expansions) 
• Commercial software is not able to determine complex modes, but it 
can be combined with properties of complex modes (i.e., moving  
around constraints of commercial software, HFSS, CST, FEKO, NEC) 
• Analytic and physical properties 

Peculiar modes investigated here need some fine determination: 
• complex wavenumber or complex frequency descriptions  
• pairing of modes (long discussion in literature) 
• spectral points with vanishing derivative 
• time domain description of polarization  

Methods: 



• Field in periodic structures 
• Complex modes in periodic structures 
• Peculiar spectral points (RBE, SIP, DBE) 
• Possible structures exhibiting peculiar points 
• Excitation of complex modes in periodic structures and in  

truncated periodic structures 
• Coupling of modes with fields produced by electron 

bunches 
• Understanding complex modes in the time domain, 

including polarization evolution 
 
 
 

Points to be developed 
 



• Waveguide with elliptical sections 
 
 

Modes 
 

The elliptical cross 
sections may act as 
anisotropic sections 



Vanishing derivatives (up to 
the third one) 

Analyzing Modes 
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