Degenerate band edge oscillator (DBEO)

Mohamed Othman1, Mehdi Veysi1, Alex Figotin2, Filippo Capolino1

1Department of Electrical Engineering and Computer Science, UCI
2Department of Mathematics, UCI

Collaboration with

Edl Schamiloğlu, Christos Christodoulou
S. Yurt, X. Pan, Y. Atmatzakis

May 6, 2016
Outline and Summary

- Degenerate band edge (DBE) in slow-wave structures
- Progress in cold test study of DBE in metallic waveguide (collaboration with UNM*)
- Low starting current calculations for DBE oscillators (DBEO)
- All metallic slow-wave structures (SWSs) with DBE
- Preliminary PIC calculations for the interaction between an SWS with DBE and electron beam (collaboration with UNM**)
- Conclusion

* Collaboration with X. Pan, G. Atmatzakis and Prof. C. Christodoulou, ECE Department, University of New Mexico
** Collaboration with S. Yurt, and Prof. E. Schamiloglu, ECE Department, University of New Mexico

Degenerate band edge (DBE)

Waveguide structures can support a DBE, instead of only an RBE (regular band edge). At DBE, we have four degenerate modes

\[
(\omega_d - \omega) \propto (k - k_d)^4
\]

Bloch wavenumber \(k_d = \pi / d \)

Four mode synchronization

Dispersion relation for SWS with DBE and e-beam

\[
\left(\omega_d - \omega \right) - h(k - k_d)^4 \left[\omega - u_0k \right]^2 = C(\omega, k, I_0)
\]

Four EM modes

e-beam

coupling

Four mode super synchronization

\[
u_0 \approx \frac{\omega_d}{k_d}
\]

\(u_0\): electron's average velocity

Slow wave structures with DBE

DBE Frequency 2.1 GHz

\[\varphi_{\text{DBE}} \sim 68^\circ \]

Dispersion diagram

Full-wave simulations (CST Microwave Studio)

Group delay

Waveguide fabrication and cold test

Copper rings + Foam support for rings + Waveguide flanges

Copper rings
Foam support for rings
Waveguide flanges

S-parameters measurement done using KEYSIGHT N5247A PNA-X Microwave Network Analyzer

Different lengths of SWS

Measurements:

1- Reflection and transmission parameters
2- Group delay
3- Dispersion relation

Collaboration with UNM, Christos Christodoulou, X. Pan, Y. Atmatzakis, UNM
Cold test: 1 port, S-parameters

Different lengths

<table>
<thead>
<tr>
<th>S_{11}</th>
<th>(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 2$</td>
<td></td>
</tr>
<tr>
<td>$N = 4$</td>
<td></td>
</tr>
<tr>
<td>$N = 8$</td>
<td></td>
</tr>
</tbody>
</table>

N is number of unit cells

DBE resonance peak

- Only measuring S_{11} (the end of the waveguide is shorted)
- $|S_{11}| < 0$ dB means coupling to losses in the waveguide
Cold test: resonances

9 resonances are extracted from measurements for the 8 cell resonator

- Resonance frequencies are used to synthesize the dispersion relation of the periodic waveguide

Number of resonances = $N + 1$, $N =$ number of cells

Different lengths

$|S_{11}|$ (dB)

Frequency (GHz)

1 port measurement

Short circuit
Measurement of dispersion relation

- Good agreement between full-wave simulations (CST) and measurements
- Other measurements (quality factor, delay, etc) have been also carried out, confirming the existence of DBE

Coupled Transmission Lines (CTL) formalism

- At DBE, four degenerate modes interact (synchronized) with the electron beam
- The interactive system can be modeled using generalized Pierce theory [1–3]. DBE is associated with giant gain and low-start current

Recently published papers:

Degenerate band edge oscillator (DBEO)

- The starting oscillation current I_{st} decreases with increasing DBEO length.
Degenerate band edge oscillator (DBEO)

- The starting oscillation current I_{st} decreases with increasing DBEO length.

- Scales as

$$I_{st} = \frac{\alpha}{N^5}, \quad N : \text{number of unit cells}$$
Degenerate band edge oscillator (DBEO)

- The starting oscillation current I_{st} decreases with increasing DBEO length.

- Scales as

$$I_{st} = \frac{\alpha}{N^5}, \quad N: \text{number of unit cells}$$

- Compared to the conventional BWO, DBEO has lower starting current and better scaling

$$I_{st} (\text{BWO}) \propto \frac{1}{N^3}, \quad N: \text{number of unit cells}$$

All-metallic SWS with DBE for high power

SWS 1: Periodic “corrugated” waveguide with elliptical cross sections

- A unit cell consisting of circular waveguide loaded with two irises of elliptical shape
- Elliptical irises are misaligned with angle ϕ
- Similar to corrugated waveguides, except the corrugation’s cross-sections are elliptic

Circular waveguide

Elliptical cross-section

Dispersion diagram

Cross-section

Period d

Side view

Normalised Bloch Wavenumber $k d / \pi$

Frequency (GHz)

500 kV beam line DBE
SWS 2: Periodic waveguide with split-ring loading

- A unit cell consisting of circular waveguide loaded with two coupled split-rings
- Circular or elliptical split-rings
- Split-rings are connected to the waveguide wall

Dispersion diagram

Host waveguide operates below cutoff
DBE frequency ~ 1.2 GHz
SWS 3: Rectangular waveguide loaded with coupled CSRR metasurfaces

- A unit cell consisting of rectangular waveguide loaded with two metasurfaces
- Two coupled metasurfaces are implemented with Complimentary Split Ring Resonators (CSRR)
- There is asymmetry between the two metasurfaces (shape+longitudinal offset)

Rectangular waveguide

CSRR metasurface 1

CSRR metasurface 2

Unit cell

Period d

Period d

Cut off waveguide

Dispersion diagram

SBE: Split band edge

Group velocity = 0

Can be readily optimized to exhibit a DBE as well

Corrugated SWS, elliptical cross sections

The structure is designed to exhibit a DBE for the following parameters

<table>
<thead>
<tr>
<th>r_{wg}</th>
<th>d</th>
<th>h_1</th>
<th>h_2</th>
<th>a</th>
<th>b</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 mm</td>
<td>30 mm</td>
<td>15 mm</td>
<td>3 mm</td>
<td>33 mm</td>
<td>18 mm</td>
<td>45 deg.</td>
</tr>
</tbody>
</table>

DBE frequency \sim 4.5 GHz

- Elliptical cross sections support two polarizations
- Modes are coupled periodically
- DBE, and other degeneracy conditions can be achieved

Yellow: metal

r_{wg}: circular waveguide radius, d: period, a: elliptical iris major radius, b: elliptical iris minor radius, φ: misalignment angle, h: iris thickness, s: separation between irises
Corrugated SWS, elliptical cross sections

Dispersion relation

The DBE mode is designed to have a higher interaction impedance than the lower order mode.

Electric field E_z component distribution of DBE mode

Strong E_z component on the waveguide axis
Preliminary PIC simulations: MAGIC 3D

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Radius</td>
<td>1 cm</td>
</tr>
<tr>
<td>Anode Radius</td>
<td>3 cm</td>
</tr>
<tr>
<td>Applied Voltage</td>
<td>500 kV</td>
</tr>
<tr>
<td>Voltage Rise-Time</td>
<td>2 ns</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>3 T</td>
</tr>
</tbody>
</table>

Collaboration with UNM, Edl Schamiloglu, S. Yurt
Case 1: Constant beam voltage

- **Beam voltage**
 - Initial voltage: ~500 kV
 - Voltage remains relatively constant.

- **Beam current**
 - Current: ~0 kA
 - Current remains relatively constant.

- **Output microwave power**
 - Peak power: 95 MW
 - Power fluctuates over time.

- **Input beam power**
 - ~1 GW

- **Efficiency**
 - ~9.5%

- **Fast rise time**
 - ~8 ns

Collaboration with UNM, Edl Schamiloglu, S. Yurt
Case 2: 12 ns beam pulse (UNM’s SINUS-6)

- Fast starting of oscillation
- Will be optimized for power extraction and suppression of higher order modes (this is a first demonstration, it has not been optimized for high power. We have a scheme to do it.)

At DBE frequency:
- ~ 4.5 GHz

Output spectrum

Collaboration with UNM, Edl Schamiloglu, S. Yurt
Conclusions

- Cold experimental test was performed to demonstrate for the first time DBE in all metallic slow-wave structures

- Degenerate band edge oscillator was shown to have a lower starting current with better scaling than conventional backward wave oscillator

- We have shown that DBE can be obtained in various metallic loaded waveguides including metamaterial-based SWSs (based on MIT design)

- Preliminary PIC simulations demonstrated fast rise time for the DBEO

Future work

- Optimize potential DBE structures using PIC codes (MAGIC + CST Particle Studio) for high power applications

- Optimize power extraction to improve efficiency (for low beam current)

- Investigate gain/loss balance scheme to maintain the DBE with high power beam in a pulse-compression-based operation (with beam as switch)
Thank you
Auxiliary slides
Corrugated SWS, elliptical cross sections

Field maps of the DBE mode

Distribution of E_z

$\max(E_z)$ on axis

Interaction impedance (normalized)
\[V_{out} = - \int E \cdot dl \]

Integration line over the output port

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Radius</td>
<td>1 cm</td>
</tr>
<tr>
<td>Anode Radius</td>
<td>3 cm</td>
</tr>
<tr>
<td>Applied Voltage</td>
<td>500 kV</td>
</tr>
<tr>
<td>Voltage Rise-time</td>
<td>2 ns</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>3 T</td>
</tr>
</tbody>
</table>
Windowed Fourier transform of output voltage

Time domain output signal

FFT Using Rectangular window

Spectrum of output signal

Voltage Spectrum [KV/GHz]
Windowed Fourier transform

Voltage Spectrum [KV/GHz]

7 - 10 ns
Windowed Fourier transform

Voltage Spectrum [KV/GHz]
Windowed Fourier transform

Voltage Spectrum [KV/GHz]

20 – 40 ns
Windowed Fourier transform

40 – 60 ns
Windowed Fourier transform

Voltage Spectrum [KV/GHz]
Windowed Fourier transform

Voltage Spectrum [KV/GHz]

80 – 95 ns
Windowed Fourier transform

Voltage Spectrum [KV/GHz]

100 – 105 ns
Conclusions:

- Oscillation with DBE frequency starts faster than other modes.
- DBE has a fast rise time thanks to the large beam current.