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CS)DIZI[I[% Outline

UNIVERSITY

= Introduction

= Design of BWO slow wave structure with mode control

= Efficiency enhancement in BWQO’s.

* Inhomogeneous SWSs and X Band BWO.

= Design Considerations for Proposed S-Band MIT hot test.
» Proposed fabrication technique for SWS structures

= Summary & Conclusion
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CS)DI;I(I[% Slow Waves and Dispersion Engineering

UNIVERSITY

Slow Waves on Transmission Lines
« Coupled transmission lines slow down group
and phase velocity of waves.

» Coupling induces capacitive effects that
control wave slow down.

Dispersion Engineering

* Coupled TL concepts and periodicity
can be exploited to engineer desired
dispersion curves.
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TQ}HHd Implementation of Coupled Transmission
SIATE Lines in Wave Slow Down

UNIVERSITY

Corrugated Wavequide- A Capacitively
coupled LC loaded transmission line
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TOI—HHd Conventional SWS for BWO’s:
SIAIE Poor Mode Purity and Interaction Impedance

UNIVERSITY

Conventional SWS Issues

» Low interaction impedance.

« Poor mode purity.

» Poor mode control capabilities.

» Hybrid mode excitation at SWS discontinuities
due to mode overlap. —

Electron Beam

Dispersion Diagram for Conventional SWS
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Fig. 2: Dispersion Diagram for conventional SWS’s
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TOI—HHd New S.W.S For High Power BWO’s
SIAIE with Mode Control

UNIVERSITY

Mode Control ic

« Cavity increments and deeper corrugations reduce TM,,
mode group velocity.

» Metallic ring inclusions control SWS modes.

* Non overlapping passbands between modes.

* Mode dominance reversal, TM,, is now dominant mode.

Interaction Impedance i

p control.lm(_g Enlarged camty
metallic ring volume
inclusions

 Interaction impedance improvement (over 100% improvement) _ '_ |
Fig. 1: Proposed design of SWS for high power BWO

Dispersion Diagram for Proposed SWS Interaction Impedance Comparison
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Fig. 2 Dispersion properties of proposed SWS. Fig. 3 Interaction impedance for conventional vs proposed SWS.
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CS)J}I?‘I[I[% TM,, Mode Purity in BWO SWS

UNIVERSITY

Mode Purity

« TM, mode of SWS interacts with
electron beam.

« Traditional SWS supports hybrid
TM,; mode with weak Ez fields due to
end reflections and passband overlap
between TE,; and TM,, mode .

* New SWS supports pure TM,; mode
as dominant mode.

* A pure TMy mode leads to increased
interaction impedance due to stronger
Ez electric field . Increased | g T
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TOI_HHd Efficiency Limitations of BWO'’s
SIATE fjictency f

UNIVERSITY

BWO efficiency using homogeneous SWS limited by: >

1. Heavily accelerated electrons retaining wave energy.
2. Low interaction impedance at collector end of SWS.
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OHIO Inhomogeneous SWS Design Approach

UNIVERSITY

To achieve high efficiency :

« Strong fields at the collector end of the SWS are required to
extract energy from highly accelerated electrons.

* Ahigher mode phase velocity is required to re trap accelerated
electrons in a retarding phase for optimum energy extraction.

Our Design achieves this by :
1. Gradually speeding up the phase velocity V... of the TM,
mode as it progresses.

Fig. 1. 3 Section SWS for BWO

2. Gradually increasing the interaction impedance K, of the
TM,; mode as it progresses in the SWS.
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Fig. 2 Capacitively coupled Transmission line model of 3 Section SWS
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TOI—HHd Optimum BWO Operating Region for
SIAIE 3 Section Inhomogeneous SWS

UNIVERSITY
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Fig. 1 Dispersion Curve for Various Periods Fig. 3 Phase Velocity Curve for Various Periods
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OHIO X Band BWO SWS
SIAIE Final Design

UNIVERSITY

Simulation Parameters:

Beam type :annular

Beam \oltage : 249kV-431 kV
Beam Current : 30 A

Electron Velocity : 0.74c — 0.84c
Beam Power :7.47 MW -12.93 MW
Magnetic Field : 2 Tesla

P, = 15 mm Fig. 1 : 9 Period, 3-section SWS
P, = 16 mm (6.67% increase from p,)
P; = 18 mm (20% increase from p,)

» Design dimensions have been
modified for easier fabrication.
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Synchronous Backward Electron Beam
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Reflection of
Backward Wave

W, = kz Bb C Fig. 2 :BWO Simulation Setup
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OHIO X Band BWO PIC Simulations

UNIVERSITY

Beam Velocity vs Frequency

» Beam velocity used to control
oscillation/operation frequency

* Frequency increases as beam velocity
increases - Consistent with BWO
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TOI"HHd Optimized 3 Section SWS for X Band BWO
SIATE P

UNIVERSITY
Highest efficiency is obtained when BWO is operated DFT of output Signal
in optimum frequency range as predicted by H
eigenmode analysis. 308
B o6
Beam current= 30A =
Beam voltage = 306 kV g 04
Electron velocity = 0.78¢ <02
Input power = 9.18 MW 0 =
Peak Output Power =6.44 MW A BFreque;fy ,GH:Z S
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bI—HHd High Efficiency BWO: Comments

UNIVERSITY

70 % Efficiency Feasibility Theoretical Prediction of Efficiency [1]
» Results are in close agreement with theoretical L i
predictions (see Figures to right) 60r
* Our 10 % higher efficiency is likely due to : a0l
1. The new SWS and higher interaction
Impedance with superior mode purity. 20t —" -
2. Used 3 section SWS with impedance taper. L - -_ |
3. Beam current is low (30 A), reducting % 05 1 15 2 25 3
detrimental space charge effects. Sax

Fig. 1 Efficiency of BWO vs the phase velocity change parameter

0.S.U Simulated results

Comments 80 ! ‘ :

* Reviewed Papers provide strong 70 Homogeneous T — R — e |
evidence that high efficiencies in X go..SWSregion | N\ T R — |
. . > s : Isolated SWS
iInhomogeneous BWOs are attainable. 250 e N N e CHONS |

. ngh (_afﬁmency operation is very Ea0 ~/  Optimum__\ e L S |
sensitive to beam parameters. 30l f N |

« High efficiency operation requires high  *,, & XN . |
interaction impedance and low operating |

i i i i ‘
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Currents' Normalized Electron Phase Velocity

Fig. 2 Efficiency of BWO vs the initial phase velocity of beam.

5‘8:#06:58#:9 [1] S.D. Korovin, S.D. Polevin, A. M. Roitman, and V.V Rostov, “Relativistic Backward Wave with Non Uniform Phase 14
CLABORATORY Velocity of the Synchronous Harmonic” Russian Physics Journal Vol. 39, No. 12 1996 .




OHIO |
SIATE Electron Beam Voltage Constraints

UNIVERSITY

M.L.T Test Facility Accelerating Voltage

2
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» MIT test facility uses 450-515 kV beams. Normalized Phase Velocity g
« \oltage corresponds to phase velocities of 0.8467c-0.8683c
 Current SWS operates between 0.7c¢-0.8¢ B= |1 — 1
« Current design phase velocity is too low for MIT test facility. [igﬂ]z

« SWS must be redesigned to support faster waves.
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OHIO |
SIAIE Electron Beam CuUrrent Constraints

UNIVERSITY

M.L.T Test Facility Beam Current
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For MIT Beam :
« MIT test facility uses 450-515 kV beam. >

« \oltage corresponds to beam currents of 68A-83A

« Current SWS operates at 30 A

« BWO operating current needs to be increased to = 80 A for MIT test facility.

« SWS design must be adjusted have higher starting current (to avoid over
bunching at 80 A)

(Vyeam2 )M peam = Constant

SlectroScience
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OHIO MIT Testing Facility Constraints

UNIVERSITY

Other MIT testing facility requirements are:

Parameter Value
Beam Radius Varies with focusing magnetic field (3 mm at 0.15T)
Beam Type Solid
Pulse Length Lus
Magnetic Field 0-0.18 T
Maximum SWS Radius 74 mm
Maximum SWS Length 450 mm

Design Challenges

« Small beam radius may reduce power and efficiency since beam is no longer close to walls

« Beam control issues arise in simulations due to low magnetic fields (previously 1 T was used)
« Small magnetic field depletes beam quality, possibly reducing energy exchange process.

« SWS length and radius constraints may affect realization of reversed mode dominance.

17




OHIO Proposed S Band BWO

USNDW?E%E Design for MIT Hot Test
Design Goal _ DFT of Output Signal
* Inhomogeneous, 3 section SWS for an S- 0;
Band BWO operating at 500 kV and 80 A v 08
SWS Properties 3 y
« 3 Section, 6 period SWS 2 08
(p=50mm,p,=54mm and p,=60mm) E 04

« SWS Radius : 42mm, SWS Length : 370mm 0.2

Beam Parameters 0-3 _
« 500kV,80A, Input Power: 40 MW 0 1 2 3 4 5 6 7 8 9
Frequency / GHz

Output Signal Output Power
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£ 2000 glo
< 3000 3
-4000 5
-5000 : : :
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Peak Output Power : 21.6 MW
Frequency: 2.83 GHz
Peak Power Efficiency: 54%

SlectroScience 18 I
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OHIO Fabrication Challenges in
SIAIE Realizing New SWS Design

UNIVERSITY

Objective
Fabricate a SWS consisting of multiple periods for the new design.

Electroforming

Challenges

« Cavity increments and metallic ring inclusions make axial profile
complex and challenging to fabricate.

« EM process can be used but is expensive.

« Alternative fabrication techniques may need be considered

Fig. 1 Electroforming process

Fig. 2 Cutaway of new SWS Design.
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OHIO - |
SIAITE Proposed Fabrication Technique

UNIVERSITY

Design Procedure

To achieve inhomogeneity within SWS and ease of
fabrication , each period will be fabricated

individually and then stacked to form a cylindrical
waveguide.

Cell Insertion

6 cells will be loaded into a waveguide
to make 3 sections with 3 different
periods (2 cells by 3 sections)

SlectroScience 20 I
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OHIO
SIAIE Summary

UNIVERSITY

Summary of Efforts

» Presented Novel SWS for high power BWO and demonstrated mode control capabilities.
» Efficiency enhancement techniques using 3 section SWSs were presented.
» Cold test eigen mode analysis for inhomogeneous SWSs ware presented.
» Hot test simulation results for X Band BWO using inhomogeneous SWSs were presented
(6.44 MW at 8.47 GHz).
« S Band SWS design (for fabrication and testing at MIT) was presented.
(21.6 MW at 2.83 GHz)

Current Work

« Finalizing BWO SWS design
» Fabricate proposed BWO SWS

Thank You
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