Fractional Fourier Transform, Scale Operator, and Uncertainty Relations

Balu Santhanam
Department of Electrical And Computer Engineering
University of New Mexico
Albuquerque, NM 87131

Thalanayar S. Santhanam
Department of Physics
Saint Louis University
St. Louis, MO 63103

November 20, 2003

Abstract

The Implications of a fractional (angular) Fourier transformation on canonical communication relations, uncertainty relations, and scaling are derived.
It is well known [1] that Fourier Transform (F.T) plays a fundamental role in quantum mechanics. If \hat{q} and \hat{p} are the position and momentum self-adjoint operators which satisfy the canonical communication relations\(^*\), [CCR]

$$[\hat{q}, \hat{p}] = i, \quad (1)$$

their bases are related through the kernel of F.T.,

$$k(q, p) \equiv \langle q | p \rangle \frac{1}{\sqrt{2\pi}} e^{-iqp}, \quad (2)$$

Indeed, $k^*(q, p)$ furnish a basis for $p \left(= -i \frac{q}{\partial q} \right)$,

$$\hat{p} k^*(q, p) = p k^*(q, p), \quad (3)$$

A fractional F.T. (fr. F.T.) generalizes (1) and is defined by the kernel [2]

$$\langle q | p_\alpha \rangle = k_\alpha(q, p) = \sqrt{\frac{1 - i \cot(\alpha)}{2\pi}} \exp i \left\{ \frac{q^2 + p^2}{2} \cot(\alpha) - qpcosec(\alpha) \right\}, \quad \alpha \neq \text{multiple of } 2\pi,$$

$$= \delta(q - p), \quad \alpha = 2n\pi, \quad n = \text{integer},$$

$$= \delta(q + p), \quad \alpha = (2n + 1)\pi \quad (4)$$

It follows that

$$k_{\frac{\alpha}{2}}(q, p) = k(q, p), \quad (5)$$

and

$$|\langle q | p_\alpha \rangle| = \sqrt{\frac{\cosec(\alpha)}{2\pi}}, \quad (6)$$

The object of this note is to derive some consequences that follow in replacing F.T. by fr. F.T. in quantum mechanics, especially the CCR, Heisenberg and Robertson-Schrödinger uncertainty relations [3], and scaling operators [4].

\(^*\)We use the units $\hbar = c = 1$
From the definition of the fr. F.T., it is easily verified that

\[\hat{p}_\alpha k^*_\alpha(q, p) = p k^*_\alpha(q, p) \]

(7)

where the "fractional" momentum operator \(\hat{p}_\alpha \) is

\[\hat{p}_\alpha \equiv \cos \alpha \hat{q} + \sin \alpha \hat{p} \]

(8)

Equation 8 has been interpreted[2] as a rotation in the \((\hat{q}, \hat{p})\) space. If it is true, \(\hat{q} \) will be rotated to

\[\hat{q}_\alpha \equiv \sin \alpha \hat{q} - \cos \alpha \hat{p} \]

(9)

and of course, CCR will remain invariant. On the other hand, if \(\hat{p}_\alpha \) is interpreted as the fractional \(\hat{p} \) from the direction of \(\hat{q} \) \([\alpha = \text{angle between } \hat{q} \text{ and } \hat{p}_\alpha] \), it follows that

\[[\hat{q}, \hat{p}_\alpha] = i \sin \alpha, \]

(10)

and

\[[\hat{p}_\alpha, \hat{p}_\beta] = i \sin (\beta - \alpha), \]

(11)

The Heisenberg uncertainty relations will be modified to

\[(\Delta q)^2 (\Delta p_\alpha)^2 = \frac{1}{4} \sin^2 \alpha, \]

(12)

where, as usual,

\[(\Delta q)^2 (\Delta x)^2 \equiv \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2, \]

(13)

The modified Robertson-Schrödinger [R.S.] uncertainty relations reads as

\[\det \begin{vmatrix} (\Delta q)^2 & \Delta_\alpha(q, p) \\ \Delta_\alpha(q, p) & (p_\alpha)^2 \end{vmatrix} \geq \frac{1}{4} \sin^2(\alpha), \]

(14)

where

\[\Delta_\alpha(q, p) \equiv \left| \frac{1}{2} \left\{ \Delta \hat{q}, \Delta \hat{p}_\alpha \right\} \right| \]

\[\Delta \hat{x} \equiv \hat{x} - \langle \hat{x} \rangle \]

(15)
Here, the bracket \(\{ \} \) stands for the anticommutator. For \(\alpha = \frac{\pi}{4} \),

\[
\Delta_\alpha(q, p) \rightarrow \Delta(q, p) = \{ \Delta \hat{q}, \Delta \hat{p}_\alpha \}_+
\]

(16)

and Equation 14 will result in the standard (R.S) uncertainty relation which is stronger than the Heisenberg uncertainty relation. Expanding Equation 14, one finds

\[
(\Delta q)^2 (\Delta p_\alpha)^2 \geq \frac{1}{4} \sin^2 \alpha + \frac{1}{4} \left| \langle \sin \alpha \{ \Delta \hat{q}, \Delta \hat{p}_\alpha \}_+ + 2 \cos \alpha (\Delta q^2) \rangle \right|^2
\]

(17)

Also,

\[
(\Delta p_\alpha)^2 (\Delta p_\beta)^2 \geq \frac{1}{4} \sin^2 (\alpha - \beta) + \frac{1}{4} \left| \langle 2 \sin \alpha \sin \beta (\Delta q)^2 + 2 \cos \alpha \cos \beta (\Delta q)^2 + \sin (\alpha + \beta) \{ \Delta \hat{q}, \Delta \hat{p}_\alpha \}_+ \rangle \right|^2
\]

(18)

Some of these relations have been notified earlier [5]. The Scale Operator (generator for squeezing)

\[
\hat{X} \equiv \frac{1}{2} \{ \hat{q}, \hat{p} \}
\]

(19)

will get modified to

\[
\hat{X}_\alpha \equiv \frac{1}{2} \{ \hat{q}, \hat{p}_\alpha \} = \hat{X} \sin \alpha + q^2 \cos \alpha
\]

(20)

The squeezing operator [6], \(\exp^{\zeta \hat{X}} (\zeta = \text{squeezing state parameter}) \) will be modified as

\[
\hat{S}_\alpha \equiv \exp^{\zeta \hat{X}_\alpha}
\]

(21)

Defining the unitary Weyl operators [7],

\[
\hat{U}_\alpha \equiv \exp^{i \zeta \hat{p}_\alpha}, \zeta = \text{real}
\]

\[
\hat{V} \equiv \exp^{i \eta \hat{p}}, \eta = \text{real}
\]

(22)

Equation 10 implies

\[
\hat{U}_\alpha \hat{V} = \exp^{i \zeta \eta \sin \alpha} \hat{V} \hat{U}_\alpha
\]

(23)
References

Schrödinger E., ”Ber. kgl. Akad Wiss”,1930,296

Shinde S. and Gadre V.M., ”IEEE Transaction”, Signal Processing, 49,2545

Yuen HP, Physical Review A13”, 1976, 2226