Example: Bilateral Laplace Inversion

Consider a continuous-time signal whose bilateral Laplace transform is given
by the expression:
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This expression has one zero at s = —1 and three poles at s = —2, -3, 1.

Performing a partial fractions expansion on this expression because it is

purely rational:
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X(s) = .
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Comparing coefficients or substituting specific values of s we obtain:
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By definition the ROC of this expression cannot contain singularities. There-
fore there are several possibilities for the ROC of this expression:

1. 0 < —3: Region I
2. 0 > 1: Region II
3. —2 < o < 1: Region III

Note that of these three possibilities only Region III includes the imaginary
axis and therefore will result in a absolutely integrable inverse. Before we
begin to investigate the inverse, we will make use of the following Laplace
transform pairs:

L (e_“tu(t)> = 554 ° > —a,
L (eatu(—t)) = %, o <a.

We will also make use of the pairs obtained by replacing a with —a:

L (eatu(t)) = 0>
L (—e_“tu(—t)) = _|1_ -0 < —a.



The solution for the Laplace inverse in this case is given by:
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Upon using the appropriate Laplace transform pairs we obtain:
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In region I, i.e., 0 < —3, we obtain the inverse:
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Using the pairs described before:

+

2(t) = —ée_%u(—t) + %e_?’tu(—t) _ ée‘tu(—t).

Clearly this solution produces a non-causal signal and will not be bounded
as t — —oo. For region II, we have the solution:
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The corresponding solution for the inverse is:

2(t) = ée_%u(t) - %e_gtu(t) + éetu(t).

Again this solution is purely causal but will not be bounded as t — oo.



