Exponential Fourier Series

If the orthogonal countably infinite collection of functions {¢;(t),7 = —o0, ..., 00} forms
a basis for the space Ha, b| then any function f(¢) in the square integrable space Hla, b|.
can be expressed as a unique linear combination of the members of this collection.
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When the collection of functions {¢;(t),i = —o0,...,00} is an orthogonal collection of

functions these unique coefficients can be obtained by using the inner product < f(t), ¢x(t) >
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where we have used the fact that the summation and the integration operators can be
swapped because they are both linear operations and the integration variable and the sum-
mation index are independent of each other.

The synthesis and analysis relations for the function f(t) € Hla, b] are given by
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In the special case where the orthogonal collection of functions are the collection of complex
exponentials:

(@0} = e (j70t)  —co i< oo,

The synthesis and analysis relations can be rewritten to give the exponential Fourier series
expansion for the function f(t).
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The Fourier series coefficient for k& = 0, ¢q is termed the dc coefficient or the average value of
the function. The term w, = %—” is called the fundamental frequency and integer multiples

of w, are termed harmonics. The Fourier series expansion of the function f (t) therefore can
be treated as a spectral analysis and synthesis of the function f(t).



