Example: Bilateral Laplace Inversion

Consider a continuous-time signal whose bilateral Laplace transform is given by the expression:

$$
X(s)=\frac{s}{(s+1)(s-1)} .
$$

This expression has one zero at $s=0$ and two poles at $s= \pm 1$. Performing a partial fractions expansion on this expression because it is purely rational:

$$
X(s)=\frac{k_{1}}{s+1}+\frac{k_{2}}{s-1} .
$$

Comparing coefficients or substituting specific values of s we obtain:

$$
X(s)=\frac{1 / 2}{s+1}+\frac{1 / 2}{s-1} .
$$

By definition the ROC of this expression cannot contain singularities. Therefore there are several possibilities for the ROC of this expression:

1. $\sigma<-1$: Region I
2. $\sigma>1$: Region II
3. $-1<\sigma<1$: Region III

Note that of these three possibilities only Region III includes the imaginary axis and therefore will result in a absolutely integrable inverse. Before we begin to investigate the inverse, we will make use of the following Laplace transform pairs:

$$
\begin{aligned}
\mathcal{L}\left(e^{-a t} u(t)\right) & =\frac{1}{s+a}, \sigma>-a \\
\mathcal{L}\left(-e^{a t} u(-t)\right) & =\frac{1}{s-a}, \sigma<a
\end{aligned}
$$

We will also make use of the pairs obtained by replacing a with $-a$:

$$
\begin{aligned}
\mathcal{L}\left(e^{a t} u(t)\right) & =\frac{1}{s-a}, \sigma>a, \\
\mathcal{L}\left(-e^{-a t} u(-t)\right) & =\frac{1}{s+a}, \sigma<-a .
\end{aligned}
$$

The solution for the Laplace inverse in this case is given by:

$$
x(t)=\frac{1}{2} \mathcal{L}^{-1}\left(\frac{1}{s+1}, \sigma>-1\right)+\frac{1}{2} \mathcal{L}^{-1}\left(\frac{1}{s-1}, \sigma<1\right)
$$

Upon using the appropriate Laplace transform pairs we obtain:

$$
x(t)=\frac{1}{2} e^{-t} u(t)-\frac{1}{2} e^{t} u(-t)
$$

This solution for the inverse is clearly double-sided and is bounded. In region I, i.e., $\sigma<-1$, we obtain the inverse:

$$
x(t)=\frac{1}{2} \mathcal{L}^{-1}\left(\frac{1}{s+1}, \sigma<-1\right)+\frac{1}{2} \mathcal{L}^{-1}\left(\frac{1}{s-1}, \sigma<1\right)
$$

Using the pairs described before:

$$
x(t)=-\frac{1}{2} e^{-t} u(-t)-\frac{1}{2} e^{t} u(-t)
$$

Clearly this solution produces a non-causal signal and will not be bounded as $t \rightarrow-\infty$. For region II, we have the solution:

$$
x(t)=\frac{1}{2} \mathcal{L}^{-1}\left(\frac{1}{s+1}, \sigma>-1\right)+\frac{1}{2} \mathcal{L}^{-1}\left(\frac{1}{s-1}, \sigma>1\right)
$$

The corresponding solution for the inverse is:

$$
x(t)=\frac{1}{2} e^{-t} u(t)+\frac{1}{2} e^{t} u(t)
$$

Again this solution is purely causal but will not be bounded as $t \rightarrow \infty$.

