4 Parsevals Theorem

The goal in this section is to study the effect that the Fourier transform has on the time-
domain inner product defined as:
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The inverse Fourier Transform relation for the function g*(¢) is obtained as:

glt) = %/O;G(w)exp(jwt)dw
gt) = %/O;G*(w)exp(—jwt)dw.

Substituting this expression into the expression for the inner product expression we have :

<f.00> = [ 1) ( ! )/m G* (w) exp (—jwt) dow dt.

—00 2T —00

Since the integrals are over independent variables and are linear operations, they can be
swapped to yield:
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This relation referred to as the Parsevals theorem in the Fourier domain implies that the
inner product relation in the time domain is preserved, except for a scale factor of 27, in the
frequency domain. As a special case, if we were to use f(t) = g(t), then the theorem reduces
down to the expression for the energy of the signal Fy as :
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As an example, if we were to find the energy of the signal: z(t) = (%) Sa (%), the
expression for the energy via the time-domain innerproduct:
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is difficult to evaluate. If instead we compute the energy in the frequency domain keeping
in mind the Fourier transform pair:

o(t) = (%) Sa (%) o X(w) = reet (2),

we obtain the equivalent quantity in the frequency-domain easily as:
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