Parseval’s Theorem

Given that we have a function f(t) that belongs to the class of functions Hla,b|] we can

expand the function in terms of a basis of orthogonal functions {¢x(t) , —c0 < k < oo} as
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If the signal f(t) is an energy signal then its energy E is a finite quantity.
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Substituting the expansion of the function f(t) into the expression for the energy E/:
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where, again, we have interchanged the order of the summation and integration.

For periodic signals, we use the basis of complex exponentials: {¢x(t) = exp (jkwot)}.
In this case of a periodic signal f(t), the energy, E, of the periodic signal becomes infinite
and it is then more appropriate to talk of the average power over a single period:
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Following the same procedure as in the case of the energy signals we can substitute the
Fourier series expansion for f(t) in the expression for the average power and obtain:
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This is a very useful relation for computing the power because it says that the average power
P.ve of the periodic signal f(¢) can be computed both from the signal directly or indirectly
through the Fourier coefficients of the signal.



