3 Fourier Transform of Periodic Signals

In this section we look at the Fourier transform relation for periodic signals. We know from
chapter 2 that every periodic signal f(t) can be expressed in terms of its Fourier series as:
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Our goal in particular is to find the inverse Fourier transform of the function:
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Substituting the above expression in to the inverse Fourier transform relation we have:
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Since the summation and the integral variables are independent and both the sum and the
integral are linear operations they can be interchanged to yield:
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The sampling property of the delta function can then be evoked to obtain the expressions:
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This yields the Fourier transform pair for periodic signals:
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z(t) = i ckexp (jkwot) +— X(w)= Y (2mer) 6(w — kwy).
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The spectrum of a periodic signal is therefore a discrete spectrum with impulses at the
frequencies: w = kwy, —oo < k < oo with corresponding areas of 2mcy.



