Binomial Probability Law

Consider a sequence of independent events X;,7 = 1,2, ..., n that are binary
valued, i.e., with probabilities:

Pr(X;=0)=1—p, Pr(X;=1)=p, i=1,...,n.

The first possibility will be refered to as the probability of a failure and the
second will be called the probability of a success on any given trial. The
probability of getting k& successes in these n independent trials is denoted
pn k] and is given by:
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Heuristically this is easy to see since, pk(l — p)”*k is the probability asso-
ciated with each possibility where there are k successes in n trials without
ordering and the binomial coefficient is the number of such arrangements of
k successes in n trials without ordering. Some of the pertinent results can
be obtained directly as special cases of the classical binomial theorem:
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Specifically when a = b = 1, we have the familiar result:
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which corresponds to the number of possible minterms in a n-bit binary
truth table. Specifically when a = —1,b = 1 we have the result:
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This means that sum of the even binomial coefficients is the same as the

sum of the odd coefficients. Specifically when a = p,b = 1 — p, we obtain

the result:
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This result is merely a fancy restatement of the fact that Pr(S) = 1.



