Discrete Random Variables

Let X be a discrete random variable that takes integer values z; € I with
probabilities p;,7 € I. The PDF and the CDF of the discrete random variable
X in this case take the general form:

fx(@) = Y pd(z—k)
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Fx(z) = Z pru(z — k).
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1. Expectation of X
The mean or expected value of the random variable X is defined via:
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If we substitute the special form of the PDF of the discrete random variable
X into this expression we obtain the simplified relation:
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2. Variance of X
The variance or average power of the random variable X is defined via:
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If we again substitute the special form of the PDF fx(z) into this expres-
sion we obtain:
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3. Characteristic function of X
The characteristic function of the random variable X is defined via:

V() = B} = [ " @,

Again if we substitute the specific form of the PDF into this expression

we obtain:
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Uy () = B X) = 3 e,
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In other words the characteristic function W, (e/“) for discrete random
variables is just the DTFT of the probability mass sequence.



Example

Let X be Binomial random variable with parameters n, p. Calculate E(X), V(X)
and Uy (w). Here X can take values 1,2, ...,n with probabilities
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Note that in this example it would easier to evaluate the mean and variance of
the random variable from the characterisitc function rather than direct evalua-
tion via the definitions.



