Bivariate Gaussian random variable

Let X be a bivariate gaussian random variable, i.e., X ~ N(u,X). Denote the
components of X as

(%)

and components of p and ¥ as

and
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where one must understand that o152 = 021. The PDF of X i.e., the joint PDF
of the components X; and X5 is given by
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Note that det(E) = 011022 — 012021 and
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Properties of bivariate gaussian random variable:

It is completely parameterized by p and X.

The correlation coefficient between X; and X, is p = \/% Then the

covariance matrix can be rewritten as
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by noting that o2 = 091. Calculating det(¥) and 7! in terms of p, we
get det(X) = o11022(1 — p?) and
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Another way to write the density of bivariate gaussian random variable is
in terms of p by substituting the above formulae on det(X) and $71.

If the components of X are independent then the covariance matrix X is
a diagonal matrix and as shown in class, the joint pdf of the components
X1 and X5 is the product of the marginals.

In this particular case, however, uncorrelated components of X also implies
independence. This is property is not true in general.



