
Transformation of Random Vectors:

Our goal in this section is to develop analytical results for the probability distribution function

(PDF) of a transformed random vector Y in Rn given that we know the PDF, fX(x), of the
original random vector X. We shall accomplish this by looking at the n = 2 case and then
generalize the results.

Consider the sample space S1 defined on R2. X1(λ) and X2(λ) are two random variables
defined on S1. Let g1(x1, x2) and g2(x1, x2) be two continuous and differentiable functions
whose domain is the set S1. These functions g1 and g2 transform {X1, X2} via:

Y1 = g1 (X1, X2)

Y2 = g2 (X1, X2) . (1)

The transformed random variables {Y1, Y2} belong to the transformed sample space denoted
by S2. The infinitesimal area element in S1 is dx1dx2 and is related to the infinesimal area
element in the S2 via the Jacobian as :
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where the Jacobian matrix is defined by:
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Let us assume that the infinitesimal element in the transformed space transfers over into k
infinitesimal elements in the original plane. The transformations g1 and g2 affect only the
definition of the set S2. The probability measure associated with the infinitesimal element
in the S2 must be the same as the sum of the probability measures associated with the k
corresponding infinitesimal elements in S1. Let {x

(i)
1 , x

(i)
2 } denote the i

th root pair of Eq. (1).
Using the mapping of the probabilities over the k infinitesimal elements in the original and
transformed element we can see that
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If we further incorporate Eq. (2) into Eq. (4) and cancel the common area term dy1dy2 from
both sides we have the relation:
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Generalizing this result to the random vectors X,Y ∈ Rn we have:

fY(y) =
k∑

i=1

fX(x
(i))/

∣
∣
∣
∣J

(
y

x(i)

)∣
∣
∣
∣ . (6)

The horizontal bars around the Jacobian indicate that we are taking the absolute value of the
determinant of the Jacobian with an understanding that this is done so that the transformed
area element is positive.
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Example

Let us consider the specific case of a linear transformation of a pair of random variables
defined by:
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In this problem we assume that the matrix A is invertible, i.e., A is full-rank or det(A) 6= 0.
In this case there is only one unique root for Eq. (7) which is given by:
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The Jacobian of this transformation is given by
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Using the results of Eq. (5) we have:
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The marginal PDF’s of the variables Y1, Y2 are given by :
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A special case is when a11 = a12 = a21 = 1, a22 = 0, b = 0 and X1, X2 are independent RVs.
In this case the marginal of Y1 assumes the form :

fY1
(y1) =

∫
∞

−∞

fX1
(y2)fX2

(y1 − y2)dy2 (12)

The above integral can be recognized as the convolution integral of the marginal PDFs of X1

and X2. A consequence of this is the following relation in terms of characteristic functions:
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Transformation of Gaussian Random Vectors

Consider the case of n-variate Gaussian random vector with mean vector mX , covariance
matrix CX and PDF given by:
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This distribution is a very special one in the sense that it is completely determined by the
pair: mX ,CX . Furthermore, the distribution is only dependent on first and second-order
statistics. This means that in the special case of the Gaussian random-vector uncorrelated-
ness of random variables corresponds to statistical independence.

Now consider a linear transformation of the random vector X, i.e., Y = AX + b. This
fits exactly into the framework of the previous example. The PDF of the transformed vector
Y can then be evaluated using Eq. (6) as:
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Substituting Eq. (14) into this result we have
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This expression can then be rewritten via linear-algebra identities as:
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Eq. (16) shows that the random vector Y is also a n-variate Gaussian random vector with
mean vector and covariance matrix parameters given by:

mY = AmX + b

CY = ACXAT . (17)

Consequently we have the important result that: “A linear transformation of a Gaussian
random vector produces another Gaussian random vector”. This result will be extremely
useful when we consider the transmission of Gaussian random signals through linear systems.
All that is needed to determine the statistics at the output of the system will be the pair
in Eq. (17). Another noteworthy observation is that the factor inside the exponent of the
multivariate Gaussian, i.e.,

D2(x,mX) = (y −mX)
T
C−1

X (y −mX) . (18)

is the squared weighted Euclidean distance between the vector y and the mean vector mX .
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