Example: PR Filterbank Design

Suppose the analysis filters of a two channel maximally decimated filterbank are given by the following FIR filters:

$$
\begin{aligned}
& H_{o}(z)=-6+2 z^{-1}+8 z^{-2}-z^{-3}-2 z^{-4}=-6+8 z^{-2}-2 z^{-4}+z^{-1}\left(2-z^{-2}\right) \\
& H_{1}(z)=-3+z^{-1}+2 z^{-2}=-3+2 z^{-2}+z^{-1} .1
\end{aligned}
$$

Extracting the polyphase components of the analysis filters we have:

$$
\begin{aligned}
& E_{00}(z)=-6+8 z^{-1}-2 z^{-2}, \quad E_{01}(z)=2-z^{-1} \\
& E_{10}(z)=-3+2 z^{-1}, \quad E_{11}(z)=1
\end{aligned}
$$

The corresponding type-1 polyphase matrix associated with the analysis filters if given by:

$$
\mathbf{E}(z)=\left(\begin{array}{cc}
-6+8 z^{-1}-2 z^{-2} & 2-z^{-1} \\
-3+2 z^{-1} & 1
\end{array}\right)
$$

The determinant of this analysis matrix is given by:

$$
\operatorname{Det}(\mathbf{E}(z))=-6+8 z^{-1}-2 z^{-2}-\left(-3+2 z^{-1}\right)\left(2-z^{-1}\right)=z^{-1}
$$

Since this is a pure delay, the analysis system is a lossless system. Using the PR filterbank framework we can compute the corresponding synthesis filters that will result in a PR system:

$$
\mathbf{R}(z)=c z^{-n_{0}} \frac{\operatorname{Adj}(\mathbf{E}(z))}{\operatorname{Det}(\mathbf{E}(z))}
$$

If we choose $c=1$ and $n_{o}=1$ we have:

$$
\mathbf{R}(z)=\operatorname{Adj}(\mathbf{E}(z))=\left(\begin{array}{cc}
1 & z^{-1}-2 \\
3-2 z^{-1} & -6+8 z^{-1}-2 z^{-2}
\end{array}\right)
$$

Comparing this to the standard form of the type-II polyphase matrix we can extract the corresponding synthesis filters:

$$
\begin{aligned}
F_{0}(z) & =R_{00}\left(z^{2}\right) z^{-1}+R_{01}\left(z^{2}\right)=1 z^{-1}+3-2 z^{-2}=3+z^{-1}-2 z^{-2} \\
F_{1}(z) & =R_{10}\left(z^{2}\right) z^{-1}+R_{11}\left(z^{2}\right)=\left(z^{-2}-2\right) z^{-1}-6+8 z^{-2}-2 z^{-4} \\
& =-6-2 z^{-1}+8 z^{-2}+z^{-3}-2 z^{-4} .
\end{aligned}
$$

