Finite Dimensional Vector Spaces

1. The inner product of two N dimensional vectors \vec{f} and \vec{g} in the Euclidean space \mathbf{R}^N is given by

$$<\vec{f}, \vec{g}> = \sum_{i=1}^{i=N} f_i g_i,$$

where $\vec{f} = \{f_1, f_2, \dots, f_N\}$ are the components of the vector \vec{f} .

2. Two vectors \vec{f} and \vec{g} in \mathbf{R}^N are orthogonal or perpendicular if and only if

$$\langle \vec{f}, \vec{g} \rangle = 0$$

3. The norm or length of a vector \vec{f} in \mathbf{R}^N denoted $||\vec{f}||_2$ is given by:

$$||f||_2 = \sqrt{\langle \vec{f}, \vec{f} \rangle} = \sqrt{\sum_{i=1}^{i=N} f_i^2}$$

- 4. The vector \vec{f} is said to be unit norm if $||f||_2 = 1$.
- 5. The finite collection of vectors $\{\vec{v}_i, i = 1, 2, ..., N\}$ in \mathbf{R}^N is said to be a orthonormal set of vectors if and only if

$$\langle \vec{v}_i, \vec{v}_j \rangle = \delta_{m,n} \equiv \begin{cases} 1 & m = n \\ 0 & m \neq n, \end{cases}$$

for every m and n in the collection and $\delta_{m,n}$ denotes the Kroneker delta symbol.

6. The finite collection of vectors $\{\vec{v}_i, i = 1, 2, ..., N\}$ forms a basis for the finite dimensional vector space \mathbf{R}^N if and only if any vector $\vec{v} \in \mathbf{R}^N$ can be expressed uniquely as a linear combination of these vectors:

$$\vec{v} = \sum_{i=1}^{i=N} c_i v_i = \sum_{i=1}^{i=N} \langle \vec{v}, \vec{v_i} \rangle \vec{v_i},$$

1

where c_i are the expansion coefficients.

Function Spaces

1. The function f(t), $t \in [a, b]$ is said to be an element of the class or family of functions $\mathbf{H}[a, b]$ that are square-integrable if and only if it satisfies:

$$E_f = \int_a^b |f(t)|^2 dt < \infty$$

This is called the membership criteria.

2. The inner product of two functions f(t) and g(t) in $\mathbf{H}[a,b]$ is defined as:

$$\langle f(t), g(t) \rangle \equiv \int_a^b f(\tau)g^*(\tau)d\tau.$$

3. The norm of a function f(t) is defined by

$$||f||^2 = \langle f(t), f(t) \rangle = E_f = \int_a^b |f(t)|^2 dt$$

 $||f|| = \sqrt{E_f}$

The space $\mathbf{H}[a,b]$ therefore contains functions f(t) that have finite norm.

4. Two functions f(t) and g(t) in $\mathbf{H}[a,b]$ are said to be orthogonal if:

$$< f(t), g(t) > = \int_a^b f(\tau)g^*(\tau)d\tau = 0.$$

5. The countably infinite collection of functions $\{\phi_i(t), i = 1, 2, ..., \infty\}$ is said to be an orthonormal collection of functions if and only if

$$\langle \phi_m(t), \phi_n(t) \rangle = \int_a^b \phi_i(\tau) \phi_j^*(\tau) d\tau = \delta_{m,n} \equiv \begin{cases} 1 & m = n \\ 0 & m \neq n, \end{cases}$$

for every m and n of the collection and $\delta_{m,n}$ denotes the Kroneker delta symbol.

6. The countably infinite collection of functions $\{\phi_i(t), i = 1, 2, ..., \infty\}$ is said to be a basis for $\mathbf{H}[a, b]$ if and only if every $f(t) \in \mathbf{H}[a, b]$ on the interval $t \in [a, b]$ can be expanded uniquely as a linear combination of these functions as

$$f(t) = \sum_{i=1}^{i=\infty} c_i \phi_i(t),$$

2

where c_i are the expansion coefficients.