Interpolation & Decimation

This document is intended to be a guide for the various interpolation and decimation related functions that are available in MATLAB.

Linear and Spline Interpolation

The first function that we will look at is interp1.m. Specifically we look at interpolation that fits a local polynomial to the data in a small window to fill in the extra information. The synopsis of this function is given below.

```
YI = INTERP1(X,Y,XI,'method') specifies alternate methods.
    The default is linear interpolation.
    X: Input time interval
    Y: Input time series
    XI : Desired output time interval
    YI : Interpolated time series
    Available methods are:
      'nearest' - nearest neighbor interpolation
      'linear' - linear interpolation
      'spline'
                - piecewise cubic spline interpolation (SPLINE)
      'pchip'
                - piecewise cubic Hermite interpolation (PCHIP)
      'cubic'
                 - same as 'pchip'
      'v5cubic' - the cubic interpolation from MATLAB 5,
                   which does no extrapolate and uses 'spline'
                   if X is not equally spaced
```

"Nearest neighbour" interpolation refers to interpolation that is based on just adjacent samples to fill in a new sample. Linear interpolation uses the interpolation filter described in the class.

Lowpass Interpolation

The second interpolation function available in MATLAB is the interp.m function that implements Sinc-interpolation. The synopsis of this function is given below.

INTERP Resample data at a higher rate using lowpass interpolation. Y = INTERP(X,R) resamples the sequence in vector X at R times the original sample rate. The resulting resampled vector Y is R times longer, LENGTH(Y) = R*LENGTH(X). A symmetric filter, B, allows the original data to pass through unchanged and interpolates between so that the mean square error between them and their ideal values is minimized. Y = INTERP(X,R,L,ALPHA) allows specification of arguments L and ALPHA which otherwise default to 4 and .5 respectively. 2*L is the number of original sample values used to perform the interpolation. Ideally L should be less than or equal to 10. The length of B is 2*L*R+1. The signal is assumed to be band limited with cutoff frequency 0 < ALPHA <= 1.0. [Y,B] = INTERP(X,R,L,ALPHA) returns the coefficients of the interpolation filter B.

Decimation

Decimation or rate reduction is accomplished by using the function decimate.m. The synopsis of this function is given below.

```
DECIMATE Resample data at a lower rate after lowpass filtering.
Y = DECIMATE(X,R) resamples the sequence in vector X
at 1/R times the original sample rate.
The resulting resampled vector Y is R times shorter,
LENGTH(Y) = LENGTH(X)/R.
DECIMATE filters the data with an eighth order Tchebychev
Type I lowpass filter with cutoff
frequency .8*(Fs/2)/R, before resampling.
Y = DECIMATE(X,R,N) uses an N'th order Chebyshev filter.
Y = DECIMATE(X,R,YFIR') uses the 30 point FIR filter generated by
FIR1(30,1/R) to filter the data.
Y = DECIMATE(X,R,N,'FIR') uses the N-point FIR filter.
```