On Least Squares Inversion

A problem of importance that we will see appear often in optimal estimation is the concept of least-squares inversion. Here we will look at the basic idea behind the least-squares estimation hoopla. Consider a system of m linear equations in n unknowns:

$$
\mathbf{A x}=\mathbf{b}
$$

Our goal is to look at two specific situations of interest:

1. $\operatorname{rank}(\mathbf{A})=m$, i.e., \mathbf{A} is of full row-rank.
2. $\operatorname{rank}(\mathbf{A})=n$, i.e., \mathbf{A} is of full column-rank.

Let us first look at the case where the system has full row-rank. The rectangular system described above does not have a unique solution because $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$. If the matrix \mathbf{A} is of full row-rank then the matrix $\mathbf{A} \mathbf{A}^{H}$ is self-adjoint and furthermore:

$$
\operatorname{rank}\left(\mathbf{A} \mathbf{A}^{H}\right)=\operatorname{rank}(\mathbf{A})=m
$$

Upon making the substitution $\mathbf{x}=\mathbf{A}^{H} \mathbf{y}$ we obtain a modified system of linear equations:

$$
\mathbf{A} \mathbf{A}^{H} \mathbf{y}=\mathbf{b}
$$

Since the matrix $\mathbf{A} \mathbf{A}^{H}$ is invertible we can obtain the solution to the modified system as:

$$
\mathbf{y}=\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{b}
$$

Substituting this solution back into the original system we obtain:

$$
\mathbf{x}_{\mathrm{ls}}=\mathbf{A}^{H} \mathbf{y}=\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{b}=\mathbf{A}_{r}^{\dagger} \mathbf{b}
$$

The matrix \mathbf{A}_{r}^{\dagger} is refered to as the least squares generalized right inverse. Note that this is a true right inverse because:

$$
\mathbf{A} \mathbf{A}_{r}^{\dagger}=\mathbf{A} \mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1}=\mathbf{I}
$$

Note further that the following relation holds:

$$
\mathbf{A} \mathbf{A}_{r}^{\dagger} \mathbf{A}=\mathbf{A}
$$

On the other hand the matrix $\mathbf{P}=\mathbf{A}_{r}^{\dagger} \mathbf{A}$ is idempotent since:

$$
\mathbf{P}^{2}=\left[\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{A}\right]\left[\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{A}\right]=\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{A}=\mathbf{P}
$$

This relation implies that the eigenvalues of \mathbf{P} are either zero or one since:

$$
\mathbf{P}^{2} \mathbf{v}=\mathbf{P} \mathbf{v}=\lambda \mathbf{v}=\lambda^{2} \mathbf{v}
$$

The matrix \mathbf{P} is in particular the projection matrix that projects vectors on to the row space of the matrix \mathbf{A}. Further note that this projection matrix is a self-adjoint projection matrix, i.e.,

$$
\mathbf{P}^{H}=\left(\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{A}\right)^{H}=\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-H} \mathbf{A}=\mathbf{A}^{H}\left(\left(\mathbf{A} \mathbf{A}^{H}\right)^{H}\right)^{-1} \mathbf{A}=\mathbf{P}
$$

The projection matrix onto the orthogonal complement is given by:

$$
\tilde{\mathbf{P}}=\mathbf{I}-\mathbf{P}=\mathbf{I}-\mathbf{A}_{r}^{\dagger} \mathbf{A}=\mathbf{I}-\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{A} .
$$

This constitutes the projection onto the null space of the matrix \mathbf{A} because for any $\mathbf{b} \in \mathbf{R}^{m}$:

$$
\mathbf{A} \tilde{\mathbf{P}} \mathbf{b}=\mathbf{A}\left(\mathbf{I}-\mathbf{A}_{r}^{\dagger} \mathbf{A}\right) \mathbf{b}=\left(\mathbf{A}-\mathbf{A} \mathbf{A}_{r}^{\dagger} \mathbf{A}\right) \mathbf{b}=\mathbf{0} \mathbf{b}
$$

The error in the least-squares solution is evaluated as:

$$
\mathbf{e}_{1}=\tilde{\mathbf{P}} \mathbf{b}=\mathbf{b}-\mathbf{A}^{\dagger} \mathbf{A} \mathbf{b}
$$

The energy in the least-squares error is therefore given by:

$$
\epsilon_{1}^{2}=\left\|e_{1}\right\|_{2}^{2}=\mathbf{b}^{H} \tilde{\mathbf{P}}^{H} \tilde{\mathbf{P}} \mathbf{b}
$$

When the matrix \mathbf{A} has full column-rank then the following observations hold:

- The matrix $\mathbf{A}^{H} \mathbf{A}$ is self-adjoint.
- The matrix $\mathbf{A}^{H} \mathbf{A}$ is of full-rank, i.e., $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{H} \mathbf{A}\right)=n$.

Multiplying both sides of the original equation system by \mathbf{A}^{H} yields:

$$
\mathbf{A}^{H} \mathbf{A} \mathbf{x}_{\mathrm{ls}}=\mathbf{A}^{H} \mathbf{b}
$$

The solution to this modified system is given by:

$$
\mathbf{x}_{\mathrm{ls}}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}=\mathbf{A}_{l}^{\dagger} \mathbf{b}
$$

The matrix \mathbf{A}_{l}^{\dagger} is refered to as the least-squares generalized left-inverse because:

$$
\mathbf{A}_{l}^{\dagger} \mathbf{A}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{A}=\mathbf{I}, \quad \mathbf{A} \mathbf{A}_{l}^{\dagger} \mathbf{A}=\mathbf{A} .
$$

The projection matrix \mathbf{P}_{r} onto the range space of the matrix \mathbf{A} is given by:

$$
\mathbf{P}_{r}=\mathbf{A} \mathbf{A}_{l}^{\dagger}=\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}
$$

The corresponding projection operator onto the left-null space of the matrix \mathbf{A} is given by:

$$
\tilde{\mathbf{P}}_{\mathrm{ln}}=\mathbf{I}-\mathbf{A} \mathbf{A}_{l}^{\dagger}=\mathbf{I}-\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}
$$

Furthermore, this is indeed a projection onto the left-null space because for $\mathbf{b} \in \mathbf{R}^{n}$:

$$
\mathbf{b}^{H} \mathbf{P}_{\ln } \mathbf{A}=\mathbf{b}^{H}\left(\mathbf{I}-\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}\right) \mathbf{A}=\mathbf{b}^{H}(\mathbf{A}-\mathbf{A})=\mathbf{0} .
$$

The error in the corresponding least-squares estimate is given via:

$$
\mathbf{e}_{2}=\tilde{\mathbf{P}}_{\ln } \mathbf{b}, \quad \epsilon_{2}^{2}=\mathbf{b}^{H} \tilde{\mathbf{P}}_{\ln }^{H} \tilde{\mathbf{P}}_{\ln } \mathbf{b}
$$

