Background

The goal of this exercise is to design a discrete-time FIR filter using the least-squares technique. For a discrete-time, LTI system with impulse response $h[n]$, we define the frequency response of the system via:

$$
H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} h[n] \exp (-j \omega n)
$$

For the specific case where the filter is a finite impulse response (FIR) filter, we have simplify the above as:

$$
H\left(e^{j \omega}\right)=\sum_{n=0}^{L-1} h[n] \exp (-j \omega n)
$$

This quantity however, is still an non computable quantity because the frequency variable ω is still a continuous variable defined on $[-\pi, \pi]$. Instead if we sampled the frequency grid at $\omega_{k}, 0 \leq k \leq N-1$ we have :

$$
H\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{L-1} h[n] \exp \left(-j \omega_{k} n\right), 0 \leq k \leq N-1
$$

This quantity is a computable quantity because it can be written as the inner product of two vector via:

$$
H\left(e^{j \omega_{k}}\right)=\left[1 e^{-j \omega_{k}} e^{-j 2 \omega_{k}} \ldots e^{-j(L-1) \omega_{k}}\right] \mathbf{h},
$$

where $\mathbf{h}=[h[0] h[1] \ldots h[L-1]]^{T}$ is a vector containing the impulse response coefficients. Rearranging these constraints in the form of a linear system of
equations we have:

$$
\left(\begin{array}{cccc}
1 & e^{-j \omega_{1}} & e^{-j 2 \omega_{1}} & \ldots e^{-j(L-1) \omega_{1}} \\
1 & e^{-j \omega_{2}} & e^{-j 2 \omega_{2}} & \ldots e^{-j(L-1) \omega_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
1 & e^{-j \omega_{N}} & e^{-j 2 \omega_{N}} & \ldots e^{-j(L-1) \omega_{N}}
\end{array}\right)\left(\begin{array}{c}
h[0] \\
h[1] \\
\vdots \\
h[L-1]
\end{array}\right)=\left(\begin{array}{c}
H\left(e^{j \omega_{1}}\right) \\
H\left(e^{j \omega_{2}}\right) \\
\vdots \\
H\left(e^{j \omega_{N}}\right)
\end{array}\right)
$$

where we have assumed that $N<\frac{L-1}{2}$. Note that these coefficients are in general complex. For implementation purposes if we assume that the LTI system is a type I, FIR system, i.e., L is odd and further constrain the filter $h[n]$ coefficients to be symmetric, i.e.,

$$
h[n]=h\left[\frac{L-1}{2}-n\right] .
$$

The frequency response relation can then be rewritten in the form of:

$$
\begin{equation*}
H\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{L-1} h[n] \exp \left(-j \omega_{k} n\right)=e^{-j \omega\left(\frac{L-1}{2}\right)} \sum_{n=0}^{\frac{L-1}{2}} a[n] \cos \left(\omega_{k} n\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a[0]=h\left[\frac{L-1}{2}\right], a[n]=2 h\left[\frac{L-1}{2}-n\right], n=1,2, \ldots, \frac{L-1}{2} . \tag{2}
\end{equation*}
$$

These $\frac{L+1}{2}$ equations in the seuqnce $a[n]$ can then be rearranged in the following matrix form:

$$
\underbrace{\left(\begin{array}{cccc}
1 & \cos \omega_{1} & \cos 2 \omega_{1} & \ldots \cos \frac{(L-1) \omega_{1}}{2} \\
1 & \cos \omega_{2} & \cos 2 \omega_{2} & \ldots \cos \frac{(L-1) \omega_{2}}{2} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \cos \omega_{N} & \cos 2 \omega_{N} & \ldots \cos \frac{(L-1) \omega_{N}}{2}
\end{array}\right)}_{\mathbf{A}} \underbrace{\left(\begin{array}{c}
a[0] \\
a[1] \\
\vdots \\
a\left[\frac{L-1}{2}\right]
\end{array}\right)}_{\mathbf{a}}=\underbrace{\left(\begin{array}{c}
\left|H\left(e^{j \omega_{1}}\right)\right| \\
\left|H\left(e^{j \omega_{2}}\right)\right| \\
\vdots \\
\left|H\left(e^{j \omega_{N}}\right)\right|
\end{array}\right)}_{\mathbf{b}},
$$

The matrix \mathbf{A} in the above system has full row-rank, i.e., $\operatorname{rank}(\mathbf{A})=$ $\min \left(N, \frac{L-1}{2}\right)=N$. The solution to this system is obtained via the leastsquares right inverse:

$$
\begin{equation*}
\mathbf{a}=\mathbf{A}_{R}^{\dagger} \mathbf{b}=\mathbf{A}^{H}\left(\mathbf{A A}^{H}\right)^{-1} \mathbf{b} \tag{3}
\end{equation*}
$$

Unlike the earlier system this equation system is a real and the solution for the filter coefficients will be real.

