Frequency Response of FIR Linear Phase Systems

FIR, linear phase systems fall into one of 4 categories:
1. M even, hln| is symmetric (Type I),
2. M odd, h[n] is symmetric (Type II),
3. M even, h[n] is antisymmetric (Type III),
4. M odd, h[n] is antisymmetric (type IV).

In this section, will examine what these symmetry conditions translate to
in terms of the system frequency response.

Type I Systems

FIR linear phase systems that fall into this category have an even order, i.e.,
M is even and the impulse response of these systems is symmetric, i.e.,

M
h[n] = h[M —n], n= <2> +1,..., M.
The frequency response of systems in this category can be split up into 3
terms:
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After a substitution of variables in the second term we obtain:
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Combining the first and the second sum in the frequency response and using
the Euler identity we have:
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The frequency response of the systems in this category can then be put into
the general form:
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where the coefficients a[n] are given by:
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Type II Systems

For systems in this category, the filter order M is odd and the impulse
response is symmetric. As in the previous case, we can expand the frequency
response in the following fashion:
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After a substitution of variables in the second term we obtain:
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Combining the two sums in the frequency response and using the Euler
identity we obtain:
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The frequency response of systems in this category can then be put in the
general form of:
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where the coefficients b[k] are given by:
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Type III Systems

The FIR linear phase systems in this category have an even model order, i.e.,
M is even but the impulse response is antisymmetric, i.e., h[n| = —h[M —n].
Using the antisymmetry and the fact that M is even:

h[M/2] = —h[—M/2] «— h[M/2] = 0.

In a manner similar to the derivations for the earlier FIR linear phase sys-
tems, it can be shown that the frequency response of systems in this category
have the general form:
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where the coefficients in the sum, c[k] are given by:
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Type IV Systems

For systems in this category the model order is odd, i.e., M is odd but the
impulse response is antisymmetric, i.e., h[n] = —h[M — n]. In a manner
similar to the derivations for the earlier FIR linear phase systems, it can
be shown that the frequency response of systems in this category have the
general form:
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