Frequency Response of FIR Linear Phase Systems

FIR, linear phase systems fall into one of 4 categories:

1. M even, $h[n]$ is symmetric (Type I),
2. M odd, $h[n]$ is symmetric (Type II),
3. M even, $h[n]$ is antisymmetric (Type III),
4. M odd, $h[n]$ is antisymmetric (type IV).

In this section, will examine what these symmetry conditions translate to in terms of the system frequency response.

Type I Systems

FIR linear phase systems that fall into this category have an even order, i.e., M is even and the impulse response of these systems is symmetric, i.e.,

$$h[n] = h[M - n], \quad n = \left(\frac{M}{2}\right) + 1, \ldots, M.$$

The frequency response of systems in this category can be split up into 3 terms:

$$H(e^{j\omega}) = \sum_{n=0}^{M-1} h[n] \exp(-j\omega n) + \sum_{n=M/2+1}^{M} h[M - n] \exp(-j\omega n) + h\left(\frac{M}{2}\right) e^{-j\omega \frac{M}{2}}.$$

After a substitution of variables in the second term we obtain:

$$H(e^{j\omega}) = \sum_{n=0}^{M/2-1} h[n] \exp(-j\omega n) + \sum_{n=0}^{M/2-1} h[n] \exp(j\omega n) e^{-j\omega M} + h\left[\frac{M}{2}\right] e^{-j\omega \frac{M}{2}}.$$

Combining the first and the second sum in the frequency response and using the Euler identity we have:

$$H(e^{j\omega}) = \sum_{n=0}^{M/2-1} 2h[n] \cos(\omega n) e^{-j\omega \frac{M}{2}} + h\left[\frac{M}{2}\right] e^{-j\omega \frac{M}{2}}.$$
The frequency response of the systems in this category can then be put into the general form:

\[H(e^{j\omega}) = \sum_{n=0}^{\frac{M}{2}} a[n] \cos(\omega n)e^{-j\omega \frac{M}{2}} = A(e^{j\omega})e^{-j\omega \frac{M}{2}}, \]

where the coefficients \(a[n] \) are given by:

\[
a[n] = \begin{cases}
 h \left(\frac{M}{2} \right) & n = 0 \\
 2h \left(\frac{M}{2} - n \right) & n = 1, \ldots, \frac{M}{2}
\end{cases}
\]

Type II Systems

For systems in this category, the filter order \(M \) is odd and the impulse response is symmetric. As in the previous case, we can expand the frequency response in the following fashion:

\[H(e^{j\omega}) = \sum_{n=0}^{\frac{M-1}{2}} h[n]e^{-j\omega n} + \sum_{n=\frac{M+1}{2}}^{M} h[n]e^{-j\omega n}. \]

After a substitution of variables in the second term we obtain:

\[H(e^{j\omega}) = \sum_{n=0}^{\frac{M-1}{2}} h[n]e^{-j\omega n} + \sum_{n=0}^{\frac{M-1}{2}} h[n]e^{j\omega n}e^{-j\omega M}. \]

Combining the two sums in the frequency response and using the Euler identity we obtain:

\[H(e^{j\omega}) = \sum_{n=0}^{\frac{M+1}{2}} 2h[n] \cos(\omega n)e^{-j\omega \frac{M}{2}}. \]

The frequency response of systems in this category can then be put in the general form of:

\[H(e^{j\omega}) = \sum_{k=1}^{\frac{M+1}{2}} b[k] \cos \left[\omega \left(k - \frac{1}{2} \right) \right] e^{-j\omega \frac{M}{2}}, \]

where the coefficients \(b[k] \) are given by:

\[b[k] = 2h \left[\frac{M + 1}{2} - k \right], \quad k = 1, \ldots, \frac{M + 1}{2}. \]
Type III Systems

The FIR linear phase systems in this category have an even model order, i.e., M is even but the impulse response is antisymmetric, i.e., $h[n] = -h[M - n]$. Using the antisymmetry and the fact that M is even:

$$h[M/2] = -h[-M/2] \iff h[M/2] = 0.$$

In a manner similar to the derivations for the earlier FIR linear phase systems, it can be shown that the frequency response of systems in this category have the general form:

$$H(e^{j\omega}) = j \sum_{k=1}^{M/2} c[k] \sin(k\omega) e^{-j\omega M/2},$$

where the coefficients in the sum, $c[k]$ are given by:

$$c[k] = 2h \left[\frac{M}{2} - k \right], \quad k = 1, 2, \ldots, \frac{M}{2}.$$

Type IV Systems

For systems in this category the model order is odd, i.e., M is odd but the impulse response is antisymmetric, i.e., $h[n] = -h[M - n]$. In a manner similar to the derivations for the earlier FIR linear phase systems, it can be shown that the frequency response of systems in this category have the general form:

$$H(e^{j\omega}) = j \sum_{k=1}^{M/2} d[k] \sin(k\omega) e^{-j\omega M/2} = A(e^{j\omega})e^{-j\omega M/2 + j\pi/2},$$

where the coefficients $d[k]$ in the sum are given by:

$$d[k] = 2h \left[\frac{M + 1}{2} - k \right], \quad k = 1, 2, \ldots, \frac{M + 1}{2}.$$