## Examples: Polyphase Decomposition

Consider a moving average system with system function of the form:

$$
H(z)=1-0.5 z^{-1}+0.25 z^{-2}-0.125 z^{-3}+0.0625 z^{-4}
$$

The type I polyphase components with respect to $M=2$ obtained by grouping the terms into two sets is given by:

$$
E_{o}(z)=1+0.25 z^{-1}+0.0625 z^{-2}, \quad E_{1}(z)=-0.5-0.25 z^{-1}
$$

Now consider a first-order auto regressive (AR) stable and causal system with system function $H(z)$ given by:

$$
H(z)=\frac{1}{1-\alpha z^{-1}}, \quad|z|>\alpha, \quad \alpha<1
$$

A power series expansion of $H(z)$ using the geometric series expansion is given by:

$$
H(z)=1+\alpha z^{-1}+\alpha^{2} z^{-2}+\alpha^{3} z^{-3}+\alpha^{4} z^{-4} \ldots
$$

Grouping the terms into two sets yields the type I polyphase components with respect to $M=2$ :

$$
\begin{aligned}
& E_{o}(z)=\frac{1}{1-\alpha^{2} z^{-1}} \\
& E_{1}(z)=\frac{\alpha}{1-\alpha^{2} z^{-1}} .
\end{aligned}
$$

In this case the system function $H(z)$ is expanded as:

$$
H(z)=E_{o}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right) .
$$

As a first observation note that the ROC of these polyphase filters $E_{i}(z)$, i.e., $|z|>\alpha^{2}$ is different from the ROC of $H(z)$. If however, we group the terms with respect to the integer $M=3$ we obtain a different set of polyphase components:

$$
\begin{aligned}
E_{o}(z) & =\frac{1}{1-\alpha^{3} z^{-1}} \\
E_{1}(z) & =\frac{\alpha}{1-\alpha^{3} z^{-1}} \\
E_{2}(z) & =\frac{\alpha^{2}}{1-\alpha^{3} z^{-1}} .
\end{aligned}
$$

For this case, the system function $H(z)$ is expanded as:

$$
H(z)=E_{o}\left(z^{3}\right)+z^{-1} E_{1}\left(z^{3}\right)+z^{-2} E_{2}\left(z^{3}\right)
$$

The corresponding type II polyphase expansion of $H(z)$ would be:

$$
H(z)=R_{2}\left(z^{3}\right)+z^{-1} R_{1}\left(z^{3}\right)+z^{-2} R_{o}\left(z^{3}\right)
$$

Let us now look at an example with a second-order system specifically a digital resonator with system function:

$$
H(z)=\frac{1}{1-2 R \cos \theta z^{-1}+R^{2} z^{-2}}, \quad|z|>R, \quad R<1
$$

If we factorize the denominator into two parts the system function can be rewritten as:

$$
H(z)=\frac{1}{\left(1-R e^{j \theta} z^{-1}\right)\left(1-R e^{-j \theta} z^{-1}\right)}
$$

If we multiply numerator by the factor $\left(1+R e^{j \theta} z^{-1}\right)\left(1+R e^{-j \theta} z^{-1}\right)$ and simplify the resultant expression we obtain the following type I polyphase components:

$$
E_{o}(z)=\frac{1+R^{2} z^{-1}}{1-2 R^{2} \cos 2 \theta z^{-1}+R^{4} z^{-2}}, \quad E_{1}(z)=\frac{2 R \cos \theta}{1-2 R^{2} \cos 2 \theta z^{-1}+R^{4} z^{-2}}
$$

