Power Spectral Factorization

Consider a zero-mean, WSS, discrete-time, random signal with a power spectrum $P_{x x}(z)$ that is real and positive on the unit circle, which has a finite average power $P_{\text {ave }}^{x}$, where both $P_{x x}(z)$ and $\log \left(P_{x x}(z)\right)$ are analytic in the region $\rho<|z|<\frac{1}{\rho}$. It can be shown that a power spectrum that satisfies these requirements can be factorized into the form:

$$
P_{x x}(z)=\sigma_{o}^{2} H_{\min }(z) H_{\max }(z), \quad \rho<|z|<\frac{1}{\rho}, 0<\rho<1
$$

where $H_{\min }(z)$ is the monic minimum phase part of $P_{x}(z), H_{\max }(z)$ is the monic maximum phase part of $P_{x x}(z)$ and σ_{o}^{2} is the variance of the innovations process.

The cepstrum representation of a random signal is defined via the DTFT pair:

$$
\begin{align*}
C\left(e^{j \omega}\right) & =\log \left(P_{x x}\left(e^{j \omega}\right)\right)=\sum_{n=-\infty}^{\infty} c[n] \exp (-j \omega n) \tag{1}\\
c[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} C\left(e^{j \omega}\right) \exp (j \omega n) d \omega, \tag{2}
\end{align*}
$$

where $c[n]$ are referred to as the cepstral coefficients. The parameters of the power spectral factorization of the random signal can be related to the cepstrum representation via:

$$
\sigma_{o}^{2}=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left(P_{x x}\left(e^{j \omega}\right)\right) d \omega\right) .
$$

This parameter is sometimes referred to as the geometric mean (GM) of the power spectrum. The minimum phase part is defined via:

$$
H_{\min }(z)=\exp \left(\sum_{k=1}^{\infty} c[k] z^{-k}\right), \quad|z|>\rho
$$

Notice from the ROC that this system function corresponds to a causal system, furthermore it can be shown that is a monic system function. The fact that this is a minimum-phase system function follows from the fact that both $H_{\min }(z)$ is minimum-phase as well as its logarithm. In a similar fashion, the maximum phase part of the power spectrum is given by:

$$
H_{\max }(z)=\exp \left(\sum_{k=-\infty}^{-1} c[k] z^{-k}\right), \quad|z|<\frac{1}{\rho} .
$$

In a manner similar to the minimum-phase part it can be shown that this system function corresponds to a monic maximum phase system function.

Ramifications of PSD Factorization

In addition to allowing us to factor the PSD of a random signal into three parts, the PSD factorization theorem also implies the following:

1. The random signal $x[n]$ and its innovations process $v[n]$ are linearly equivalent, i.e.,

$$
\begin{align*}
& x[n]=\sum_{k=-\infty}^{\infty} h_{\min }[k] v[n-k] \tag{3}\\
& v[n]=\sum_{k=-\infty}^{\infty} \gamma[k] x[n-k] \tag{4}
\end{align*}
$$

2. The innovations equivalent of the random signal $v[n], n \in \mathbf{I}$ constitutes an orthonormal basis for the Hilbert space of finite average power random signals that satisfy the criteria for PSD factorization. This innovations process is sometimes referred to as the Kalman innovation process and will play a major role in optimal estimation.
3. The power spectrum $P_{x x}(z)$ of the WSS random signal is composed of poles and zeroes that come in complex conjugate reciprocal pairs:

$$
P_{x x}(z)=\sigma_{o}^{2} \frac{B(z) B^{*}\left(\frac{1}{z^{*}}\right)}{A(z) A^{*}\left(\frac{1}{z^{*}}\right)}
$$

4. Since we require the PSD, which is a continuous function of ω, to be positive and real on the unit-circle, the zeros of $P_{x x}(z)$ on the unit circle come in pairs, i.e., the multiplicity of the zeroes of $P_{x x}(z)$ on the UC is even.
