Example: Power Spectral Factorization

Consider a zero-mean, second-order, WSS, random sequence $x[n]$, whose power spectral density has the form:

$$
P_{x x}\left(e^{j \omega}\right)=\frac{B\left(e^{j \omega}\right)}{A\left(e^{j \omega}\right)}=\frac{12.5-10 \cos \omega}{1.64-1.6 \cos \omega}, \quad \omega \in[-\pi, \pi] .
$$

First note that the maximum and minimum values of the numerator and denominator are positive:

$$
B_{\max }=22.5, \quad B_{\min }=2.5, \quad A_{\max }=3.24, \quad A_{\min }=0.04
$$

Furthermore both the numerator and denominator of the PSD are purely real. This PSD therefore satisfies the conditions set by the factorization theorem. Using the Euler identity and replacing $e^{j \omega}$ by z yields:

$$
P_{x x}(z)=\frac{12.5-5 z-5 z^{-1}}{1.64-0.8 z^{-1}-0.8 z}=10\left(\frac{1.25-0.5 z-0.5 z^{-1}}{1.64-0.8 z^{-1}-0.8 z}\right) .
$$

Factorization of both the numerator and denominator yields:

$$
P_{x x}(z)=10 \frac{\left(1-0.5 z^{-1}\right)(1-0.5 z)}{\left(1-0.8 z^{-1}\right)(1-0.8 z)}, \quad 0.8<|z|<1.25 .
$$

Grouping the causal terms and the non causal terms we have:
$H_{\min }(z)=\frac{1-0.5 z^{-1}}{1-0.8 z^{-1}}, \quad|z|>0.8, \quad H_{\max }(z)=\frac{1-0.5 z}{1-0.8 z}, \quad|z|<1.25, \quad \sigma_{v}^{2}=10$.
It can indeed be verified that $H_{\text {min }}(z)$ corresponds to a monic, minimum phase system function and $H_{\max }(z)$ corresponds to maximum phase system function. The average power of this random sequence can be obtained from the factorization using:

$$
r_{x x}[0]=\text { coefficient on } z^{0} \text { in } P_{x x}(z)=12.5
$$

Now consider the causal system function of the form:

$$
H_{\text {white }}(z)=\frac{1}{\sigma_{v} H_{\min }(z)}, \quad|z|>0.5 .
$$

If the random sequence $x[n]$ is the input signal to this system, the power spectrum of the output random sequence is given by:

$$
P_{y y}(z)=P_{x x}(z) H(z) H^{*}\left(\frac{1}{z^{*}}\right)=P_{x x}(z)\left(\frac{1}{\sigma_{v} H(z)}\right)\left(\frac{1}{\sigma_{v} H^{*}\left(1 / z^{*}\right)}\right) .
$$

Utilizing the PSD factorization it is easy to see that the numerator is just the same as the denominator and consequently $P_{y y}(z)=1$. This implies that $H_{\text {white }}(z)$ corresponds to the system function of a whitening system that takes the sequence $x[n]$ and converts it into zero-mean, unit variance white noise (weak sense).

