6 Impulse Sampling and Nyquist Sampling Theorem

To facilitate the processing of a continuous-time signal z.(t), it is more convenient to work
with discretised samples taken at integer multiples of the sampling period ¢ = nT;. The
discrete sequence so obtained by sampling the continuous-time signal z.(t) is denoted z[n]
so that z[n] = x.(nT5).

The process of sampling the continuous-time signal x.(t) is modeled as multiplication of
the the continuous-time waveform with a periodic impulse train:

pt) = 3 6t kT

k=—o0
whose period is T}:
zs(t) = x.(t) Z ot — kTy) = Z z(kTy)o(t — kKT,) = Z x[k]o(t — ET).
k=—o0 k=—o0 k=—o0

Our goal is to determine the relation of sampled signal spectrum to the spectrum of the
continuous-time signal. The first approach is to use the product-convolution Fourier trans-
form pair:

X(®) = o {X(0) £ PO},

The periodic impulse train p(t) has a Fourier series expansion and its Fourier coefficient is
Cp = %’ Vk. Using the expression for the Fourier transform of a periodic signal we obtain
the transform of the impulse train as:

PQ) = QT—” 3 5<Q—k2T—7:).

$ k=—o0

The spectrum of the sampled signal can therefore be written as:

S k=—o0

X.(Q) = %{XC(Q)*%W 3 5(9—%—”)}

X, = Ti S X (Q-k?—”) _ Ti _i X, (2 — Q). (1)

S k=—o0

Equation 1 is significant in that it tells us that the spectrum of the sampled signal is a sum
of replicas of itself shifted in frequency by €2, = QT—: This relation is often refered to as the
spectral aliasing sum. Constructive and destructive interference of the terms in the sum is
refered to as spectral aliasing. If each term in the aliasing sum is not restricted in terms
of its support in the frequency domain then the terms in the aliasing sum will overlap and
cause loss of information via constructive and destructive interference. So impulse sampling
of the continuous-time signal z.(t) will result in loss of information unless the terms in the
aliasing sum are restricted in terms of their frequency-domain support, i.e., they must be
band-limited.

Let us assume that z.(t) is indeed a band-limited continuous-time signal band-limited to
—Q,, <Q <Q,,. The copy of X.(£2) shifted by €, i.e., X .(£2—€), has a freqyency-domain
support between Qg — Q,, < Q < Qg + Q,,,. There will be no overlap between X.(Q — )



and X.(Q) if the lower band edge of X.(£2 — Q) does not fall within the band 0 < Q < Q,,,
i.e., for no aliasing and loss of information we require that:

The lowerbound €2, = 2(2,, is commonly refered to as the the Nyquist sampling frequency.
This means that the minimum angular sampling frequency €2, needed for no information loss
is the Nyquist rate, i.e., twice the maximum frequency content of the continuous-time signal
z.(t). Reformulated this means for a given sampling period Ty, the maximum allowable
frequency content of the continuous-time signal x.(t), €2, is :

The other approach to obtaining the spectrum of the sampled signal X (€2) is to use the
discrete-sequence z[n]:

X)) = F(i fﬂ[/f](S(t—kTs)) = i z[K]F(0(t — KT5))

k=—o0 k=—o0
X,(Q2) = > zlk]exp (—jQkT,) = X(¢/*), where w = QT,. (2)
k=—o0

The spectrum of the sampled signal using the sequence z[n] is periodic in the € variable
with fundamental period €2, as described by:

oo

X{(Q+Q,) = Z x[k] exp (—j (2 + Q) kTy)
Xs(Q+Qy) = i x|k exp (—jQkT) exp (—j2km) = X,(Q).

1

Since the function X,(€2) described above is periodic in the frequency variable €2 with period
(), it has a complex Fourier series representation in the frequency-domain as:

2

Xs(Q) = Z Cn exp( <Qs> Q) = i cn exp (—jnQTy) ,

n=—oo n=—oo

where the Fourier coefficients in the expansion are obtained from:

k= Q/ Q) exp (JEQT) dS2.

Substituting Eq. 2 into the Fourier coefficient expression and interchanging the order of the
sum and integral we have:

1

< 1
e o 2 / exp (j(k —n)QT,)dQY = o k;oo [ (Q0n%) = z[kl.

Qsan,k

This means that the sequence of Fourier coefficients of the periodic function X,(2) is just
the discrete sequence z[k] of sampled values of the continuous-time signal z.(¢). In other
words the DTFT relation in Eq. 2 is also the complex Fourier series representation of X,(€2).



7 Signal Recovery from Samples

The Nyquist sampling theorem developed in the previous section says that there is no loss
of information in the impulse sampling process if we bandlimited the signal to the band:
-7 < O < 7. and we then sample this bandlimited signal at the Nyquist rate or higher.
Our objective in this section is to recover the continuous-time signal z.(t) from the
discrete-time samples z[k]. We will do that by noting that when there is no loss of information
we can lowpass filter the sampled signal x4(t) to remove the extra spectral copies of X.(€2)

at the frequencies: 2 = k€, k # 0 as suggested by:

1 0
X0 = = 3 X(@-k0,).
S k=—o0

This lowpass filter H;(2) is defined by:

T <)<
Hz(Q) = {]0; Ts _Q_Ts

otherwise

The impulse response of the lowpass filter, denoted as h;(t), found through inverse Fourier
transformation is: ; ,
T
h;(t) = Sa (—) = Sinc (—) )
(2) T, ne { 7+

The output of the lowpass filter denoted as #.(¢) can be written as:

o0 o0

Bo(t) = m(t)xh(t) = S alklo(t— kT xhi(t) = 3 aklhi(t — KTL).

k=—o0 k=—o0

If the signal z.(t) was bandlimited and was sampled at a rate greater than the Nyquist rate
then the signal x.(t) can be recovered as:

z.(t) = i x[k] Sinc <Ti - k:) .

k=—o00 s

The sinc function in the above expression can be thought of as an interpolating function that
interpolates between the discrete samples. The process of converting z[k] into z.(t) using
the lowpass filter is often refered to as sinc interpolation. Specifically the sinc functions in
the interpolation formula are true interpolation functions because

z(mTy) = i x[k] Sinc (77;75; — k) = x[m)].

k=—o0

The fact that the interpolation formula gives correct results for other time instants also can
be infered from the frequency domain argument from the previous section.

If the signal z.(t) is not completely bandlimited to the desired region then we need to
lowpass filter the signal with an anti-alias lowpass filter, H,(£2), that restricts its spectral
content to the desired band if we are to recover the continuous-time signal from its samples.



8 Alternative View of Sampling Theorem

If the continuous time signal x.(t) has finite energy, i.e.,
B, = / 2 (t)2dt < 0o <= x(t) € H([a, b]).

then via Parsevals theorem we can see that its Fourier transform X.() is also a finite energy
signal, i.e.,

L /°° X (Q)[2d0 < 00 = X(Q) € H([—o0, c0]).

27 J-oo
If in addition we impose the restriction that X.(£2) is bandlimited to |€2] < 7 then

v (1.5

The Nyquist sampling theorem of the previous section can then be reformulated as a trans-
formation from the Hilbert space of finite-energy, bandlimited signals, H([—F-, 7-]) to the
space of square summable sequences x[n| € Iy via the reconstruction relation:

o

z.(t) = > x[k] Sinc (Ti - k:) .

k=—o00 s
Specifically if we define a basic or mother function ¢(t) as

¢(t) = Sinc (T%)

then the other functions ¢ (t) in the summation can be obtained as shifts of this basic
function via :

¢k(t) = Qs(t - kTs)

Furthermore note that these functions ¢y (t) are orthogonal because of Parsevals theorem:

< Om(t), on(t) > = e exp (—jQ(m —n)T) dQ = Ts6pmn.

21T -

The sinc functions in the summation part of the reconstruction formula

. t
¢r(t) = Sinc (i — k:)
constitute an orthogonal basis for the space of signals whose Fourier transform is finite—
energy and bandlimited, i.e., X.() € H([~7, 7:])-
From the reconstruction formula it is easy to show that if z.(t) is a finite energy ban-
dlimited signal then the sequence z|n| is a square summable sequence, i.e., z[n| € Iy because:

oo

Ey =z =75 3 |aln]* < co.

n=—oo
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