Example: cyclostationary process

Consider a random process $X(t)$ that is defined via the relation:

$$
X(t, \omega)=A(\omega) \cos \left(\omega_{o} t\right)+B(\omega) \sin \left(\omega_{o} t\right), \quad t \in \mathbf{R}, \quad \omega \in \mathbf{R}
$$

where $A \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $B \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ and are independent of each other. If we now sample this process at any $t_{o} \in \mathbf{R}$ we obtain the random variable:

$$
X\left(t_{o}, \omega\right)=X(\omega)=A(\omega) \cos \left(\omega_{o} t_{o}\right)+B(\omega) \sin \left(\omega_{o} t_{o}\right)
$$

Since both A and B are Gaussian random variables, the random process $X(\omega)$ has Gaussian statistics with a mean given by:

$$
\mu_{x}(t)=\mu_{1} \cos \left(\omega_{o} t\right)+\mu_{2} \sin \left(\omega_{o} t\right)
$$

The corresponding variance of the process $X(t)$ is given by:

$$
\sigma_{x}^{2}(t)=E\left\{\left(A \cos \left(\omega_{o} t\right)+B \sin \left(\omega_{o} t\right)\right)^{2}\right\}-\left(\mu_{1} \cos \left(\omega_{o} t\right)+\mu_{2} \sin \left(\omega_{o} t\right)\right)^{2} .
$$

Using the fact that A and B are independent random variables we can simply the above expression to:

$$
\sigma_{x}^{2}(t)=\sigma_{1}^{2} \cos ^{2}\left(\omega_{o} t\right)+\sigma_{2}^{2} \sin ^{2}\left(\omega_{o} t\right)
$$

Since the mean and the variance of this process are both periodic in the t variable with a period $T_{o}^{(1)}=\frac{2 \pi}{\omega_{0}}$ this process is first-order cyclostationary. If we now sample the process at two different instants $t_{1}, t_{2} \in \mathbf{R}$ we obtain the random variables X_{1} and X_{2} defined via:

$$
\binom{X_{1}}{X_{2}}=\underbrace{\left(\begin{array}{ll}
\cos \left(\omega_{o} t_{1}\right) & \sin \left(\omega_{o} t_{1}\right) \\
\cos \left(\omega_{o} t_{2}\right) & \sin \left(\omega_{o} t_{2}\right)
\end{array}\right)}_{\mathbf{M}}\binom{A}{B} .
$$

The mean vector and the covariance matrix associated with this Gaussian random process is then given by:

$$
\mu_{x}=\mathbf{M}\binom{\mu_{1}}{\mu_{2}}, \quad \mathbf{C}_{x x}=\mathbf{M} \operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right) \mathbf{M}^{T}
$$

The auto-covariance function associated with this process is obtained as the off-diagonal element of the covariance matrix $\mathbf{C}_{x x}$:

$$
C_{x x}\left(t_{1}, t_{2}\right)=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2} \cos \left(\omega_{c}\left(t_{2}-t_{1}\right)\right)+\frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{2} \cos \left(\omega_{c}\left(t_{1}+t_{2}\right)\right) .
$$

Substituting $t_{1}=t$ and $t_{2}=t-\tau$ we obtain:

$$
C_{x x}(t, \tau)=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2} \cos \left(\omega_{c} \tau\right)+\frac{\sigma_{1}^{2}-\sigma_{2}^{2}}{2} \cos \left(2 \omega_{c} t-\omega_{c} \tau\right)
$$

This expression is periodic in the t variable with a fundamental period of $T_{o}^{(2)}=\frac{2 \pi}{2 \omega_{o}}$. Consequently all other second-order statistics of the process such as $R_{x x}(t, \tau)$ and $\rho_{x x}(t, \tau)$ are also periodic with the same periodicity and the random process $X(t)$ is second-order cyclostationary. The Gaussian statistics make this process strict sense cyclostationary.

The time-averaged auto-covariance function obtained from averaging out the dependence on the t variable is given by:

$$
\tilde{C}_{x x}(\tau)=\int_{-T_{o}^{(2)} / 2}^{T_{o}^{(2)} / 2} C_{x x}(t, \tau) d t=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2} \cos \left(\omega_{c} \tau\right)
$$

We will revisit this specific form again when we look at the Rice representation for bandpass processes. It suffices to say that in general the process $X(t)$ is not stationary but cyclostationary. For the specific case where $\mu_{1}=\mu_{2}=0$ and $\sigma_{2}^{2}=\sigma_{2}^{2}=\sigma^{2}$ we obtain the special case where $\mu_{x}(t)=0, \sigma_{x}^{2}(t)=\sigma^{2}$ and $R_{x x}(\tau)=\sigma^{2} \cos \left(\omega_{o} \tau\right)$. In this case, the process $X(t)$ becomes WSS and because the process is Gaussian it is also SSS.

