Optimal Wiener Deconvolution

The Wiener deconvolution problem seeks to extract an estimate of the SOI d[n] from observations of the
form:
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where g[n] is the distortion system and e[n] is white, additive observation noise that is uncorrelated with the
SOI. The cross-correlation between the SOI and the observations can be computed as:
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Taking the Zee transform on both sides:

Pyo(2) = G” (Zl*) Pya(z).

In a similar fashion the PSD of the observation can be computed as:

Pru(z) = G(2)G" (1) Paa(2) + 2.

If the inverse system corresponding to the distortion operator g[n] exists then we can completely eliminate
the distortion at the expense of ambient noise amplification:
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The system function of the optimal Wiener deconvolver that trades of elimination of the distortion with
noise reduction is given by:
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This expression can be factorized into two parts:
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Consequently the optimal Wiener deconvolver can be considered as a cascade of the inverse filter, provided
that it exists, and a Wiener smoother than minimizes the effect of noise amplification from the inverse
filtering operation. The MMSE associated with this optimal Wiener deconvolver is given by:
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Upon simplification this expression becomes:

s 2 Jw
Emin = i/ I Faa(e ) dw.
21 J_, |G(e7%)|2Pyq(e®) + o2




