Example: Oscillator with Random Phase

Consider the output of a sinusoidal oscillator that has a random phase and amplitude of the
form:

X(t) =cos (Qt+0O),

where © ~ U([0, 27]). Writing out the explicit dependence on the underlying sample space
S the oscillator output can be written as

z(t,0) = cos(Qt+O). (31)

This random signal falls in the continuous-time, continuous parameter, and continuous am-
plitude category and is useful in modeling propagation phenomena such as multi-path fading.
The first order distribution of this process can be found by looking at the distribution of
the R.V
Xi(O) =cos(©+46,),

where €.t = 0, is a non random quantity. This can easily be shown via the derivative method
shown in class to be of the form:

1
r) = ———, || < 1. 32

Note that this distribution is dependent only on the set of values that the process takes and
is independent of the particular sampling instant ¢ and the constant phase offset 6,.
If the second-order distribution is needed then we use the conditional distribution of z(t5)
asin :

fatt)att2) (X1, 22) = faqea)(T2) fa(tr)aea) (T1|22) (33)
If the value of z(t3) is to be equal to o then we require cos (O + Q.ty) = x9. This can
happen only when :

© = cos '(wg) — Qty or
© = 27 —cos *(x2) — Qeto, (34)

where 0 < cos™!(z9) < . All other possible solutions lie outside the desired interval [0, 27].
Consequently the random process at t = t; can only take on the values:

x(t) = cos (Q t1 + cos™ (x9) — Qctg) or
x(t;) = cos (Q t; — cos( JJQ) — Qctg) (35)

Thus the conditional distribution of x(¢1) given that x(t3) = x5 is of the form:

Ja@)a(t) (@1 |T2) = (%) 1) (.Tl — cos [Qctl + cos ™ (zg) — QCtQD
+ <%) o (ml — cos [Qctl — cos () — QCtQD : (36)

Combining Eq. (32) and Eq. (36) we have:
1

Jat) ) (@1, 22) = § —F—
v 2my/1 — 23

+ {2;} ) <x1 — CoS {Qctl — cos H(my) — Qct2:|} .37

} ) <x1 — Cos {Qctl + cos ™ (1y) — QJgD
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Note here that the second-order PDF depends only on the difference variable 7 = t; —t,. Let
us look at the first-order and second-order moments of the random process X (¢). The mean
of the process is obtained by taking the expectation operator with respect to the random
parameter © on both sides of Eq. (31) keeping in mind that the expectation integral is a
linear operation:

px = FEo(zy(0)) = Eg[cos (2t + O)]
= FEg[cos(Q.t) cos(O) — sin(£2.t) sin(O)]
= Fo[cos(0©)]cos(§2.t) — Eg [sin(O)] sin(€2.1). (38)

Since the random parameter © is uniformly distributed, the above expression reduces to:

px = cos (Q.t) (%) /027r cos(#)df — sin (Q.t) (%) /O27r sin(f)dd = 0. (39)

The variance of the random process X () is obtained by via

0% = Eo|(:(0) — px)’| = Eo ([m:(O)) — ik (40)

Substituting the mean of the process in the above expression we have:

1 2m 1 2m |1 + cos (2§t + 20) 1
o _ (1 2 _ (L
ox = (27?)/0 cos” (Q.t +6) db <27r)/o l ]dQ 5 (41)

2

This means that the average power of the random sinusoidal signal X () is

Note that this is the same as the average power of a sinusoid where the phase is not random.
Let us look at the statistics from the second-order distribution. The correlation between the
R.Vs z(t1) and x(t2) denoted as Rxx (t1,t2) is obtained via:

Rxx (i) = Folalt)a(ts)] = | 7 08 [Quty + 6] cos [uts + 0] dO
_ <%) /O%COS (Qu(ty +15) + 266 + (%) /O%COS Q4 (t1 — t2)] d6
_ (%) cos [ty — )] (42)

The covariance of R.Vs X(¢1) and X (5) denoted C'xx (t1,t2) is given by:

1
Coxx (t1,12) = Ruw (t1t2) = px(t0pix(t2) = (5) cos[(ts — ). (43)
The correlation coefficient of the R.Vs X(¢;) and X (¢5) denoted pxx (t1,t2) is:

pxx (t1,ta) = cos[Qe(t; —t2)]. (44)

Looking at the mean and the variance of the random process X (¢) we can see that they
are shift-invariant and consequently the process is first-order stationary. The ACF and other
second-order statistics of the process are dependent only on the variable 7 = ¢t; — t5. The
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random process X () is therefore a WSS process also. The ACF can then expressed in terms
of the variable 7 = ¢; — ty as:

Ryx(r) = (%) cos(Q7). (45)

Let us now look at time averages of a single sample function or realization of the random
process X (t). The sample mean of the random process irrespective of the sample realization
that we choose is:

1 2
(ux)p = T/_fg cos [t + O] dt. (46)
As T — oo we have:
Tim (ux)y = 0. (47

The sample mean of the process is therefore independent of the particular ensemble waveform
used to calculate the time-average, i.e., independent of the value of © for the realization.
Consequently we have:

Jm E{(px)py = px(t) =0
Thm Var {{(ux)r} = 0. (48)
The random process X (¢) is therefore ergodic in the mean (first-order ergodic). Let us now

look at the sample ACF of the random process X (¢). The sample ACF is again independent
of the particular realization of the process as evident from :

1 %
Jim (Rax(r))y = Jim — / " cos [t + O] cos [Qu(t — 7) + O] dt
1 2% 1 (3%
Tlgrolo (Rxx(T))p = %ggoﬁlz cos [2Q.t — Q.7 + 20| dt—i_Thfoloﬁ . cos(Q.7)dt
2 2
. 1
Jim (Rx(7)y = () cos(r) = Rx(7), (49)

The random process X (t) is therefore ergodic in the ACF (second-order ergodic).
The power-spectrum of this random signal, i.e., the Fourier transform of the ensemble
ACF can then be computed as :

Pxx(Q) = g [6(Q+ Q) + [6(Q2 — Q)] (50)

Note that this expression for the power spectrum is identical to the expression for the spec-
trum of a deterministic sinusoidal signal.



