
Example: Oscillator with Random Phase

Consider the output of a sinusoidal oscillator that has a random phase and amplitude of the
form:

X(t) = cos (Ωct+Θ) ,

where Θ ∼ U([0, 2π]). Writing out the explicit dependence on the underlying sample space
S the oscillator output can be written as

x(t,Θ) = cos (Ωct+Θ) . (31)

This random signal falls in the continuous-time, continuous parameter, and continuous am-
plitude category and is useful in modeling propagation phenomena such as multi-path fading.
The first order distribution of this process can be found by looking at the distribution of

the R.V
Xt(Θ) = cos (Θ + θo) ,

where Ωct = θo is a non random quantity. This can easily be shown via the derivative method
shown in class to be of the form:

fX(x) =
1

π
√
1− x2

, |x| < 1. (32)

Note that this distribution is dependent only on the set of values that the process takes and
is independent of the particular sampling instant t and the constant phase offset θo.
If the second-order distribution is needed then we use the conditional distribution of x(t2)
as in :

fx(t1),x(t2)(x1, x2) = fx(t2)(x2)fx(t1)|x(t2)(x1|x2) (33)

If the value of x(t2) is to be equal to x2 then we require cos (Θ + Ωct2) = x2. This can
happen only when :

Θ = cos−1(x2)− Ωct2 or
Θ = 2π − cos−1(x2)− Ωct2, (34)

where 0 ≤ cos−1(x2) ≤ π. All other possible solutions lie outside the desired interval [0, 2π].
Consequently the random process at t = t1 can only take on the values:

x(t1) = cos
(

Ωct1 + cos
−1(x2)− Ωct2

)

or

x(t1) = cos
(

Ωct1 − cos−1(x2)− Ωct2
)

(35)

Thus the conditional distribution of x(t1) given that x(t2) = x2 is of the form:

fx(t1)|x(t2)(x1|x2) =
(

1

2

)

δ
(

x1 − cos
[

Ωct1 + cos
−1(x2)− Ωct2

])

+
(

1

2

)

δ
(

x1 − cos
[

Ωct1 − cos−1(x2)− Ωct2
])

. (36)

Combining Eq. (32) and Eq. (36) we have:

fx(t1),x(t2)(x1, x2) =







1

2π
√

1− x22







δ
(

x1 − cos
[

Ωct1 + cos
−1(x2)− Ωct2

])

+







1

2π
√

1− x22







δ
(

x1 − cos
[

Ωct1 − cos−1(x2)− Ωct2
]}

. (37)
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Note here that the second-order PDF depends only on the difference variable τ = t1−t2. Let
us look at the first-order and second-order moments of the random process X(t). The mean
of the process is obtained by taking the expectation operator with respect to the random
parameter Θ on both sides of Eq. (31) keeping in mind that the expectation integral is a
linear operation:

µX = EΘ(xt(Θ)) = EΘ [cos (Ωct+Θ)]

= EΘ [cos(Ωct) cos(Θ)− sin(Ωct) sin(Θ)]

= EΘ [cos(Θ)] cos(Ωct)− EΘ [sin(Θ)] sin(Ωct). (38)

Since the random parameter Θ is uniformly distributed, the above expression reduces to:

µX = cos (Ωct)
(

1

2π

)
∫ 2π

0
cos(θ)dθ − sin (Ωct)

(

1

2π

)
∫ 2π

0
sin(θ)dθ = 0. (39)

The variance of the random process X(t) is obtained by via

σ2X = EΘ
[

(xt(Θ)− µX)
2
]

= EΘ
(

[xt(Θ)]
2
)

− µ2X (40)

Substituting the mean of the process in the above expression we have:

σ2X =
(

1

2π

)
∫ 2π

0
cos2 (Ωct+ θ) dθ =

(

1

2π

)
∫ 2π

0

[

1 + cos (2Ωct+ 2θ)

2

]

dθ =
1

2
(41)

This means that the average power of the random sinusoidal signal X(t) is

PX
ave = σ2X =

1

2
.

Note that this is the same as the average power of a sinusoid where the phase is not random.
Let us look at the statistics from the second-order distribution. The correlation between the
R.Vs x(t1) and x(t2) denoted as RXX (t1, t2) is obtained via:

RXX (t1, t2) = EΘ [x(t1)x(t2)] =
∫ 2π

0
cos [Ωct1 + θ] cos [Ωct2 + θ] dθ

=
(

1

4π

)
∫ 2π

0
cos [Ωc(t1 + t2) + 2θ] dθ +

(

1

4π

)
∫ 2π

0
cos [Ωc(t1 − t2)] dθ

=
(

1

2

)

cos [Ωc(t1 − t2)] . (42)

The covariance of R.Vs X(t1) and X(t2) denoted CXX (t1, t2) is given by:

CXX (t1, t2) = Rxx (t1, t2)− µX(t1)µX(t2) =
(

1

2

)

cos [Ωc(t1 − t2)] . (43)

The correlation coefficient of the R.Vs X(t1) and X(t2) denoted ρXX (t1, t2) is:

ρXX (t1, t2) = cos [Ωc(t1 − t2)] . (44)

Looking at the mean and the variance of the random process X(t) we can see that they
are shift-invariant and consequently the process is first-order stationary. The ACF and other
second-order statistics of the process are dependent only on the variable τ = t1 − t2. The
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random process X(t) is therefore a WSS process also. The ACF can then expressed in terms
of the variable τ = t1 − t2 as:

RXX(τ) =
(

1

2

)

cos(Ωcτ). (45)

Let us now look at time averages of a single sample function or realization of the random
process X(t). The sample mean of the random process irrespective of the sample realization
that we choose is:

〈µX〉T =
1

T

∫ T
2

−T
2

cos [Ωct+Θ] dt. (46)

As T →∞ we have:
lim
T→∞

〈µX〉T = 0. (47)

The sample mean of the process is therefore independent of the particular ensemble waveform
used to calculate the time-average, i.e., independent of the value of Θ for the realization.
Consequently we have:

lim
T→∞

E {〈µX〉T} = µX(t) = 0

lim
T→∞

Var {〈µX〉T} = 0. (48)

The random process X(t) is therefore ergodic in the mean (first-order ergodic). Let us now
look at the sample ACF of the random process X(t). The sample ACF is again independent
of the particular realization of the process as evident from :

lim
T→∞

〈RXX(τ)〉T = lim
T→∞

1

T

∫ T
2

−T
2

cos [Ωct+Θ] cos [Ωc(t− τ) + Θ] dt

lim
T→∞

〈RXX(τ)〉T = lim
T→∞

1

2T

∫ T
2

−T
2

cos [2Ωct− Ωcτ + 2Θ] dt+ lim
T→∞

1

2T

∫ T
2

−T
2

cos(Ωcτ)dt

lim
T→∞

〈RXX(τ)〉T =
(

1

2

)

cos(Ωcτ) = RXX(τ). (49)

The random process X(t) is therefore ergodic in the ACF (second-order ergodic).
The power-spectrum of this random signal, i.e., the Fourier transform of the ensemble

ACF can then be computed as :

PXX(Ω) =
π

2
[δ(Ω + Ωc) + [δ(Ω− Ωc)] . (50)

Note that this expression for the power spectrum is identical to the expression for the spec-
trum of a deterministic sinusoidal signal.
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