
Optimum Nonlinear Estimation

Consider two random variables X(λ) and Y (λ) defined on the same sample
space S. We have previously looked at the optimal linear MMSE estimate
of Y in terms of X. In this exercise we will look at the form of the optimal
nonlinear estimate of Y given the observation X. Specifically let us look at
the conditional mean estimate given by :

Ŷ = g(X) = E{Y |X} =

∫ ∞

−∞
yfY |X(y|x)dy.

Note that this estimate does not depend on Y and depends only on the
conditioned value of X, since the variable y has been integrated out. The
mean-squared error incurred by this estimate is given by:

ε2g = E{(Y − g(X))2}

Consider another estimate of Y given by Ŷ2 = h(X). The corresponding
error incurred by this estimate is given by:

ε2h = E{(Y − h(X))2}

Relating this error to the error incurred by the conditional mean estimator
we have:

ε2h = E{(Y − g(X) + g(X)− h(X))2}.

This can further be written as the sum of three terms:

ε2h = ε2g + 2E{(Y − g(X))(g(X)− h(X))}
︸ ︷︷ ︸

T2

+E{(g(X)− h(X))2}
︸ ︷︷ ︸

T3

.

The third term is always positive as is the first term. We will look at the
second term in detail. Using iterated expectation we can rewrite this :

E{(Y − g(X))(g(X)− h(X))} = EX

[

EY |X{(Y − g(X))(g(X)− h(X))}
]

Evaluating the inner expectation we have:

EY |X{(Y − g(X))(g(X)− h(X))} = (g(X)− h(X))EY |X{Y − g(X)} = 0.

We can therefore write the error incurred by the estimate h(X) as

ε2h = ε2g + E{(g(X)− h(X))2} ←→ ε2h ≥ ε2g.

The statement made above has two important implications:



1. The conditional mean estimator is the best non-linear estimate of Y
given the observations X.

2. Any other estimator be it linear or nonlinear will always have an esti-
mation error larger than the conditional mean estimator.

3. In the special case where X and Y are jointly Gaussian then the op-
timal non-linear estimate becomes the optimal linear estimate.


