Optimum Nonlinear Estimation

Consider two random variables X (\) and Y (\) defined on the same sample
space S. We have previously looked at the optimal linear MMSE estimate
of Y in terms of X. In this exercise we will look at the form of the optimal
nonlinear estimate of Y given the observation X. Specifically let us look at
the conditional mean estimate given by :
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Note that this estimate does not depend on Y and depends only on the
conditioned value of X, since the variable y has been integrated out. The
mean-squared error incurred by this estimate is given by:

eg = E{(Y — g(X))*}

Consider another estimate of Y given by Y5 = h(X). The corresponding
error incurred by this estimate is given by:

& = B{(Y - h(X))?}

Relating this error to the error incurred by the conditional mean estimator
we have:

e = BE{(Y — g(X) + g(X) — h(X))*}.
This can further be written as the sum of three terms:

e = €5+ 2E{(Y — g(X))(g(X) — h(X))} + E{(g(X) — h(X))*} .
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The third term is always positive as is the first term. We will look at the
second term in detail. Using iterated expectation we can rewrite this :

E{(Y = g(X))(g(X) = (X))} = Ex [Eyx{(Y — 9(X))(9(X) — h(X))}]
Evaluating the inner expectation we have:
Eyix{(Y = g(X))(9(X) = h(X))} = (9(X) = n(X)) By x{Y — g(X)} = 0.
We can therefore write the error incurred by the estimate h(X) as
e = eg + E{(9(X) = h(X))*} e ¢, > 5.

The statement made above has two important implications:



. The conditional mean estimator is the best non-linear estimate of Y
given the observations X.

. Any other estimator be it linear or nonlinear will always have an esti-
mation error larger than the conditional mean estimator.

. In the special case where X and Y are jointly Gaussian then the op-
timal non-linear estimate becomes the optimal linear estimate.



