Optimum Nonlinear Estimation

Consider two random variables \(X(\lambda) \) and \(Y(\lambda) \) defined on the same sample space \(S \). We have previously looked at the optimal linear MMSE estimate of \(Y \) in terms of \(X \). In this exercise we will look at the form of the optimal nonlinear estimate of \(Y \) given the observation \(X \). Specifically let us look at the conditional mean estimate given by:

\[
\hat{Y} = g(X) = E\{Y|X\} = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy.
\]

Note that this estimate does not depend on \(Y \) and depends only on the conditioned value of \(X \), since the variable \(y \) has been integrated out. The mean-squared error incurred by this estimate is given by:

\[
\epsilon_g^2 = E\{(Y - g(X))^2\}
\]

Consider another estimate of \(Y \) given by \(\hat{Y}_2 = h(X) \). The corresponding error incurred by this estimate is given by:

\[
\epsilon_h^2 = E\{(Y - h(X))^2\}
\]

Relating this error to the error incurred by the conditional mean estimator we have:

\[
\epsilon_h^2 = E\{(Y - g(X) + g(X) - h(X))^2\}.
\]

This can further be written as the sum of three terms:

\[
\epsilon_h^2 = \epsilon_g^2 + 2E\{(Y - g(X))(g(X) - h(X))\} + E\{(g(X) - h(X))^2\}.
\]

The third term is always positive as is the first term. We will look at the second term in detail. Using iterated expectation we can rewrite this:

\[
E\{(Y - g(X))(g(X) - h(X))\} = E_X \left[E_{Y|X} \{(Y - g(X))(g(X) - h(X))\}\right]
\]

Evaluating the inner expectation we have:

\[
E_{Y|X} \{(Y - g(X))(g(X) - h(X))\} = (g(X) - h(X))E_{Y|X} \{Y - g(X)\} = 0.
\]

We can therefore write the error incurred by the estimate \(h(X) \) as

\[
\epsilon_h^2 = \epsilon_g^2 + E\{(g(X) - h(X))^2\} \longleftarrow \epsilon_h^2 \geq \epsilon_g^2.
\]

The statement made above has two important implications:
1. The conditional mean estimator is the best non-linear estimate of Y given the observations X.

2. Any other estimator be it linear or nonlinear will always have an estimation error larger than the conditional mean estimator.

3. In the special case where X and Y are jointly Gaussian then the optimal non-linear estimate becomes the optimal linear estimate.