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Stochastic Process Collection of Sample Functions

Interpretation I

1 The stochastic process X (t, ω), t ∈ T , ω ∈ Ω can be viewed as a
indexed collection of waveforms

xi (t) = {X (t, ω) 3 ω ∈ Ω}

2 When Ω is discrete then the number of sample functions is countably
infinite & when Ω is a continuous set then the number is uncountably
infinite.

3 The set of functions are also call as ensemble waveforms or member
waveforms.

4 Member functions in themselves may or may not contain information.
For example, the ensemble waveforms for noise are not informative.
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Stochastic Process Example: Interpretation I

Example: Interpretation I

1 The coin flip experiment has two possible outcomes ω ∈ {T ,H} with
an underlying Bernoulli probability law.

2 The σ-field of events for this experiment is F = {φ,T ,F , S}, where
S is the whole sample space.

3 Consider a stochastic process defined via the flip of a fair coin:

X (t, ω) =

{
cos (ωot) ω ∈ H
− cos (ωot) ω ∈ T

4 This process has exactly two sample or member functions. Note that
both sample functions are continuous.
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Stochastic Process Interpretation II: Collection of Random Variables

Collection of Random Variables

1 Stochastic process X (t, ω) can be defined as a time-indexed collection
of random variables:

X (t, ω) = {xt(ω), t ∈ T}

2 For sampling times t1 < t2 < t3, . . . tn ∈ T , the process is a
n-component random vector:

X (t) = [X (t1),X (t2), . . .X (tn)]T

3 Random vector view point convenient for characterizing statistics of
the process. Gaussian stochastic process can be described via:

X (t) ∼ N (mx ,Cxx) ,

where mx is the mean-vector and Cxx is the covariance matrix
associated with the process.
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Stochastic Process Example: Interpretation II

Interpretation II: Collection of Random Variables

1 Consider a Gaussian process as input to the linear transformation:

Y = AX,

where A is a invertible linear transformation.
2 Output has Gaussian statistics Y (t) ∼ N (my ,Cyy ) since linear

combo of Gaussian random variables is Gaussian distributed:

my = Amx , Cyy = ACxxA
T

3 Strong white noise is a process whose components are independent
and identically distributed:

FX (x) =
n∏

i=1

FXi
(xi )

4 Weak white noise is a process whose components are uncorrelated:

Cxx = σ2I.
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Stochastic Process Formal definition of a Stochastic Process

Formal definition of a stochastic process

A stochastic process X (t, ω) can be formally defined as a measurable
function from the product Cartesian space T × Ω to the real line R.

t is the independent variable and ω is the stochastic parameter.

Independent variable does not have to be ”time”.

If the independent parameter is space then the process is a stochastic
image. If the independent parameter is space-time then the process is
called a stochastic field.
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Information Content Statistical Characterization

Statistical Characterization

1 The joint n-th order CDF of a stochastic process is the n-th order
joint CDF of the random vector comprising the random variables in
the collection:

FX(x; t) = Fx (x1, x2, . . . xn; t1, t2, . . . , tn) ,

Pr (X (t1) ≤ x1,X (t2) ≤ x2, . . .X (tn) ≤ xn)

2 The joint n-th order PDF is the mixed partial derivative of the joint
n-th order CDF:

fX(x; t) = fX (x1, x2, . . . , xn; t1, t2 . . . , tn) ,
∂n (FX(x; t))

∂x1∂x2 . . . ∂xn
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Information Content Moments of a Stochastic Process

First Order Statistics

1 Using interpretation II, the mean of a stochastic process is defined via:

µx(t) = E{Xt(ω)} =

∫ ∞
−∞

xfX (x ; t)dx

2 Similarly the variance of a stochastic process is defined via:

σ2
x = E{(Xt(ω)− µx(t))2} =

∫ ∞
−∞

(x − µx(t))2fX (x ; t)dx .

3 These two moments constitute the first-order statistics of the process
and in general are functions of time.
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Information Content Moments of a Stochastic Process

Second-Order Statistics

1 The autocorrelation function of the process X (t) is given by:

Rxx(t2, t2) = E{X (t1)X ∗(t2)} =

∫ ∞
−∞

∫ ∞
−∞

xyfXY (x , y)dxdy

2 The autocovariance function of the process X (t) is given by:

Cxx(t1, t2) = Rxx(t1, t2)− µx(t1)µ∗x(t2).

3 The autocoherence function of the process X (t) is given by:

ρxx(t1, t2) =
Cxx(t1, t2)

σx(t1)σx(t2)
.
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Information Content Example: Stochastic Process I

Stochastic process example

1 Consider the two-part stochastic process defined in viewpoint I,
defined on the toss of a fair coin. Its first-order PDF is given by:

fX (x ; t) =
1

2
δ (x − cos(ωot)) +

1

2
δ (x + cos(ωot))

2 The corresponding first-order CDF is given by:

FX (x ; t) =
1

2
u (x − cos(ωot)) +

1

2
u (x + cos(ωot)) .

3 The mean and variance of the process are given by:

µx(t) =
1

2
cos(ωot) +

1

2
(− cos(ωot)) = 0

σ2
x(t) =

1

2
cos2(ωot) +

1

2
cos2(ωot) = cos2(ωot).
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Information Content Example: Stochastic Process I

Stochastic Process Example I

1 Joint probability density function for continuous sample functions for
t1, t2 ∈ R is given by:

fX1,X2(x1, x2; t1, t2) =
1

2
δ(x1 − cos(ωot1), x2 − cos(ωot2))

+
1

2
δ(x1 + cos(ωot1), x2 + cos(ωot2))

2 Other transitions have zero probability due to the continuity
assumption of the sample functions.

3 Joint density is not separable and does not factor into marginal
densities:

fX1,X2(x1, x2; t1, t2) 6= fX1(x1; t1)fX2(x2; t2)
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Information Content Example: Stochastic Process I

1 The autocorrelation function for this example is computed as:

Rxx(t1, t2) = E{X (t1)X (t2)}

=
1

2
cos(ωot1) cos(ωot2) +

1

2
cos(ωot1) cos(ωot2)

= cos(ωot1) cos(ωot2).

2 The autocovariance function is given by:

Cxx(t1, t2) = Rxx(t1, t2)− µx(t1)µx(t2) = cos(ωot1) cos(ωot2).

3 The temporal coherence function for this process is given by:

ρxx(t1, t2) =
cos (ωot1) cos (ωot2)

| cos (ωot1) cos (ωot2) |
.
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Information Content Example: Stochastic Process II

1 Consider the oscillator process defined via:

X (t, ω) = cos (Ω(ω)t),

where the frequency is a normal random variable, Ω ∼ N(Ωc , σ
2).

2 Unlike the previous example, this process has a uncountably infinite
number of realizations due to fact that the normal random variable is
defined on the entire real line.

3 The ensemble mean of the process us given by:

µx(t) = E{cos(Ω(ω)t)} =

∫ ∞
−∞

cos (xt)N(Ωc , σ
2)dx .

4 Employing Euler identities this integral can be expressed as:

µx(t) =
1

2

∫ ∞
−∞

N(Ωc , σ
2) exp (jxt)dx+

1

2

∫ ∞
−∞

N(Ωc , σ
2) exp−(jxt)dx
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Information Content Example: Stochastic Process II

1 Each of the individual integrals corresponds to the characteristic
function of a normal random variable with mean µx = Ωc and
variance σ2

x = σ2:

ΨN(jt) = exp (jΩct) exp

(
−1

2
σ2t2

)
.

2 The ensemble mean of the process X (t) can then evaluated via:

µx(t) =
1

2
(ΨN(jt) + ΨN(−jt)) = cos (Ωct) exp

(
−1

2
σ2t2

)
3 The ensemble variance σ2

x of this process is given by:

σ2
x(t) = E{X 2

t (ω)} − µ2
x(t) = E{cos2 (Ω(ω)t)} − µ2

x(t)

Balu Santhanam (UNM) August 26, 2018 15 / 20



Information Content Example: Stochastic Process II

1 The mean-squared value of the process is first computed as:

E{cos2 (Ω(ω)t)} =

∫ ∞
−∞

cos2 (Ω(x)t)N
(
Ωc , σ

2
)
dx .

2 Substituting the double-angle formula for the trigonometric function
we have:

E{cos2 (Ω(ω)t)} =
1

2
+

1

2

∫ ∞
−∞

cos (2Ω(x)t)N
(
Ωc , σ

2
)
dx

3 Using the expression for the characteristic function of a Gaussian
random variable:

E{cos2 (Ω(ω)t)} =
1

2
+

1

4
(ΨN(j2t) + ΨN(−j2t))

4 We can finally evaluate the mean-squared value:

E{X 2
t (ω)} =

1

2
+

1

2
cos (2Ωct) exp

(
−2σ2t2

)
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Information Content Example: Stochastic Process II

1 The ensemble variance can now be evaluated as:

σ2
x(t) =

1

2
+

1

2
cos (2Ωct) exp

(
−2σ2t2

)
− cos2 (Ωct) exp

(
−σ2t2

)
2 The ensemble ACF of this process is given by:

Rxx(t1, t2) = EΩ{cos (Ωt1) cos (Ωt2)}

3 Using trigonometric identities we can evaluate this expression as:

Rxx(t1, t2) =
1

2
EΩ{cos (Ω(t1 + t2))}+

1

2
EΩ{cos (Ω(t1 − t2))}

4 Rewriting each of these expressions in terms of the mean we have:

Rxx(t1, t2) =
1

2
cos (Ωc(t1 + t2)) exp

(
−σ

2

2
(t1 + t2)2

)
+

1

2
cos (Ωc(t1 − t2)) exp

(
−σ

2

2
(t1 − t2)2

)
.
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Information Content Gaussian Stochastic Process

1 If constituent random variables of a process are Gaussian random
variables then resultant process called a Gaussian random process
(GRP).

2 n-th order joint statistics specified by n-variate Gaussian distribution:

fX(x; t) = (2π)−n/2|det(Cxx)|−1/2 exp

(
−1

2
(x−mx)TC−1

xx (x−mx)

)
3 Distribution completely specified by knowledge of mx and Cxx . No

additional information in higher-order moments.

4 Finds application in numerous problems such as modeling Brownian
motion, in modeling superposition of i.i.d. random variables.
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Information Content White Noise Process

1 When random variables comprising the stochastic process are i.i.d this
process is called strong-sense white-noise.

2 In this case, the n-th order PDF of the process factors are product of
marginals as:

fX (x ; t) =
n∏

i=1

fXi
(xi ; ti )

3 A weaker form of this process occurs when the constituent random
variables are uncorrelated instead:

σ(Xt ,Xt−τ ) = σ2
xδ(τ).

Note that the average power of the process, i.e., Rxx(0) is not finite.
These processes are therefore not physically realizable.

4 A weak-sense white noise stochastic sequence is one whose pair-wise
covariance matrix is diagonal:

Cx = diag(σ2
1, σ

2
2, . . . , σ

2
n).
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Information Content White Noise Process

1 The pair-wise auto-correlation sequence corresponding to a
weak-sense white-noise sequence is:

rxx [n, k] = E{x [n]x∗[n − k]} = σ2
xδ[n − k].

2 Unlike the continuous-time white noise process, the discrete sequence
has finite average power:

Pave = rxx [0] = σ2
x <∞

3 In both cases, the corresponding power spectral density (PSD) is flat:

Pxx(jΩ) = σ2
x , Ω ∈ R, Pxx(e jω) = σ2

x , ω ∈ [−π, π].

Hence the name ”white noise”.

4 Observation of this process at two time-instants provides no
additional information over observation at a single instant. No
information can be gleaned from additional samples.
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