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A Generalized Normalized Gradient
Descent Algorithm

Danilo P. Mandic

Abstract—A generalized normalized gradient descent (GNGD)
algorithm for linear finite-impulse response (FIR) adaptive
filters is introduced. The GNGD represents an extension of the
normalized least mean square (NLMS) algorithm by means of
an additional gradient adaptive term in the denominator of the
learning rate of NLMS. This way, GNGD adapts its learning
rate according to the dynamics of the input signal, with the addi-
tional adaptive term compensating for the simplifications in the
derivation of NLMS. The performance of GNGD is bounded from
below by the performance of the NLMS, whereas it converges in
environments where NLMS diverges. The GNGD is shown to be
robust to significant variations of initial values of its parameters.
Simulations in the prediction setting support the analysis.

Index Terms—Adaptive filtering, gradient adaptive learning
rate, nonlinear prediction, normalized least mean square.

1. INTRODUCTION

HE LEAST mean square (LMS) algorithm is a simple,
yet most frequently used, algorithm for adaptive finite-im-
pulse response (FIR) filters. It is described by the following [1]:

e(k) = d(k) = x" (k)w(k) ()
w(k+ 1) = wi(k) + pe(k)x(k) @)

where e(k) is the instantaneous error at the output of the filter
for the time instant &, d(k) is the desired signal, x(k) = [z(k —
1),...,2z(k — N)]7 is the input signal vector, NV is the length
of the filter, (-)7 is the vector transpose operator, and w(k) =
[wi(k),...,wx(k)]T is the filter coefficient (weight) vector.
The parameter s is the step size (learning rate) that defines how
fast the algorithm is converging along the error performance sur-
face defined by a cost function E(k) = (1/2)e?(k) and is crit-
ical to the performance of LMS. Ideally, we want an algorithm
for which the speed of convergence is fast and the steady-state
misadjustment is small when operating in a stationary environ-
ment, whereas in a nonstationary environment the algorithm
should change the learning rate according to the dynamics of the
input signal, so as to achieve as good a performance as possible.

To that cause, the normalized LMS (NLMS) algorithm has
been introduced [1]. The step size of NLMS was found to be
n(k) = p/llx(k) 13,0 < p < 2, where || - ||2 denotes
the Euclidean norm. The derivation and analysis of NLMS rest
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upon the usual independence assumptions,! and in theory, value
1 = 1 provides the fastest convergence [1], whereas in prac-
tice, the step size of the NLMS algorithm needs to be consider-
ably smaller.2 To preserve stability for close-to-zero input vec-
tors, the optimal NLMS learning rate is usually modified as
w/llx 13 — n/(]] x(k) |2 +€), where € is a small positive
constant.

However, input signals with unknown and possibly very large
dynamical range, an ill-conditioned tap input autocorrelation
matrix and coupling between different signal modes can lead to
divergence of LMS and a poor performance if not divergence of
NLMS. To deal with these problems, a number of gradient adap-
tive step size LMS algorithms have been developed in the last
two decades, examples of which are algorithms by Kuzminskiy
[2], Mathews [3], and Benveniste [4]; the mathematical descrip-
tion of the latter two is given in the Appendix. The condition for
optimal adaptation in this sense is dE/du = 0.3 Benveniste’s
algorithm was derived rigorously, without taking into account
the independence assumptions, resulting in computationally de-
manding learning rate updates, whereas Mathews’ algorithm
uses instantaneous gradients for learning rate adaptation. Based
upon Benveniste’s algorithm, to reduce its computational com-
plexity, a class of variable step size algorithms was recently
proposed in [5]. Other improvements include imposing hard
constraints on the lower and upper bounds for the step size,
superimposing regression on the step size sequence [6], and re-
ducing the computational complexity by employing sign algo-
rithms [7]. Morgan and Kratzer [8] provide a review of the ex-
isting adaptive step size NLMS-based algorithms, whereas in
[9], graded updates (individual step sizes for every filter coeffi-
cient) are thoroughly analyzed in the LMS setting.

A major disadvantage of the algorithms based upon estima-
tors of OF(k)/0u is their sensitivity to the time correlation be-
tween input signal samples and to the value of the additional
step size parameter that governs the gradient adaptation of the
step size. To this cause, a generalized normalized gradient de-
scent (GNGD) algorithm is proposed here, which is based upon
the NLMS, where an additional stabilization and faster conver-
gence are introduced by making the compensation term ¢ in the
denominator of the NLMS step size gradient adaptive. Unlike

IThe independence assumptions used in the analysis of adaptive filters are:
1) sequences x(k) and w(k) are zero mean, stationary, jointly normal, and with
finite moments; 2) the successive increments of tap weights are independent of
one another; and 3) the error and x(k) sequences are statistically independent
of one another.

2In almost all analyses of the class of LMS adaptive filters, it is assumed that
the filter coefficients are statically independent of the input data currently in
filter memory, an assumption that is incorrect for shift-input data.

3Notice that in the steady state this condition leads to y(o0) = 0.
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other variable step size algorithms, which operate satisfactorily
if the initial learning rate is set close to the optimal learning rate
of LMS (which is not known beforehand), the GNGD is robust
to changes in the initialization of the step size adaptation param-
eter p, compensation term &, and learning rate p. The analysis
is supported by simulations on colored, nonlinear and nonsta-
tionary signals.

II. GNGD ALGORITHM

Due to noise, ill-conditioned tap input correlation matrix,
close-to-zero value of the input data vector, or a large learning
rate p, the NLMS algorithm (3) is not optimal for many
practical settings

Wil +1) = w(k) + e e(Wx(k)
=w(k) +n(k)e(k)x(k). 3)
To that cause, parameter ¢ in (3) is made gradient adaptive as
e(k+1)=e(k) = pVee-1)E(K). “4)

Using the chain rule, the gradient V_(;_1) E(k) can be evaluated
as

OE(k)  OE(k) de(k) dy(k) ow(k) on(k—1)
de(k — 1) 9e(k) dy(k) Ow(k) on(k — 1) 0e(k — 1)
(el = 1)< (R)x( — 1 s

e 2 .
(I x(k = 1) 15 +e(k — 1))
The proposed GNGD algorithm is therefore described by

y(k) =x" (k)w(k)

e(k) =d(k) — y(k)
w(k +1) =w(k) + n(k)e(k)x(k)
n(k) = .k
| x(k) 113 +e(k)
e(k) =e(k—1) — pp e(k)e(k — D)x"(k)x(k—1) ©)

(I x(k = 1) |13 +e(k = 1))’
Notice that there is a fundamental difference between the vari-
able step size algorithms with a “linear” multiplicative adap-
tation factor (Mathews’ and Benveniste’s; see the Appendix)
and GNGD, which employs a nonlinear update of the adaptive
learing rate n(k). The merit of the proposed algorithm is that
its learning rate provides compensation for the assumptions in
the derivation of NLMS, and therefore, due to its robustness and
improved stability, GNGD is well suited for processing of non-
linear and nonstationary signals.

A. Stability, Robustness, and Computational Complexity of
GNGD Algorithm

The classical analysis of the GNGD in terms of convergence
in the mean, mean square and steady state follows the well-
known analysis from the literature [3], [10]. The adaptive step
size n of GNGD is essentially bounded by the stability limits of
the step size of the NLMS algorithm. To find the lower bound
on the compensation term ¢, consider the uniform convergence
condition

le(k + )] < [1=n(k) [| x(k) 13 lle(k)]. ()
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Fig. 1. Performance comparison between NLMS and GNGD on a colored
signal (10) for g = 0.001.

Hence
[1—n(k) | x(k) [I3] <1 ®)

which gives 0 < /(|| x(k) 13 +e(k)) < 2/|| x(k) |[3. For
1 = 1, the lower bound for stability of GNGD with respect
to e(k) is

EOIH
2

Computational complexity of GNGD lies in between the com-
plexity of Mathews’ and Benveniste’s algorithms and is roughly
twice that of NLMS. To reduce computational complexity of
GNGD, and prevent distrubance in the steady state, it is pos-
sible to impose hard bounds on £(k), or to stop its adaptation
after convergence. In the experiments, however, for generality,
no such constraints were imposed. Due to the nonlinear nature
of learning rate adaptation, GNGD is responsive and robust to
the initialization of its parameters.

e(k) > — ©)

III. EXPERIMENTS

For the experiments, the order of the FIR adaptive filter was
N = 10, and 100 runs of independent trials were performed and
averaged in the prediction setting. The performance of GNGD
was first compared to that of NLMS and then to performances of
other variable step size algorithms. For generality, linear, non-
linear and nonstationary signals were used in simulations. The
linear signal was white noise {x(k)} with zero mean and unit
variance, passed through an AR filter (colored input) given by

y(k) = 1.79y(k — 1) — 1.85y(k — 2)

+1.27y(k — 3) — 0.41y(k — 4) + (k). (10)

Speech was used as a nonstationary signal, whereas a nonlinear
signal was [11]

y(k)
1+ y?(k)
For GNGD, the initial values were p = 0.15 whereas p was
varied according to the aim of the experiment. The initial value
€(0) was set to zero for most of the experiments. Fig. 1 il-
lustrates the GNGD exhibiting faster convergence and similar

y(k+1) = + 23 (k). (11)
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Fig. 2. Performance comparison between NLMS and GNGD for a nonlinear
signal (11) for ¢ = 1.99.
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Fig. 3. Performance comparison of GNGD, Mathews’, and Benveniste’s
algorithms for signal (10).

steady state performance to that of NLMS for a colored signal
(10), for a relatively small u. A performance comparison of
GNGD and NLMS on prediction of nonlinear signal (11) is
shown in Fig. 2. Learning rate 1+ = 1.99 was chosen to be close
to the stability bound of NLMS, and GNGD comprehensively
outperformed NLMS. Due to its nature, the GNGD performance
was similar or better than that of NLMS when NLMS was stable,
whereas GNGD was convergent in cases when NLMS was not
(p > 2). Fig. 3 provides performance comparison between the
GNGD algorithm and Mathews’ and Benveniste’s algorithms
for signal (10). In this case, GNGD outperformed the other two
variable step size algorithms. In a general case, however, de-
pending on the character of a signal, GNGD exhibited better,
similar, or slightly worse performance than the other two vari-
able step size algorithms. However, its advantage over the other
two considered algorithms was excellent stability and robust-
ness over a whole spectrum of signals.

Fig. 4 illustrates sensitivity of the prediction gain
R, = 10log,,(var(y)/var(e)) for a variation of yx and p
for nonlinear signal (11). The GNGD was clearly able to
provide stabilization of its NLMS type adaptation, for a range
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Fig. 4. Robustness of Rp to the variation of i and p for nonlinear signal (11).
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Fig. 5. Time variation of (k) for prediction of a speech signal for different
values of the learning rate /.

of values of parameter y, exhibiting very low sensitivity to the
initialization of its parameters p and £(0). This is not the case
with Mathews’ and Benveniste’s algorithms, which perform
well if they are initialized with a very small learning rate and
are very sensitive to the choice of parameter p.

Fig. 5 shows the variation of (k) for prediction of a non-
stationary speech signal. As p increases toward suboptimal and
unstable performance of NLMS, GNGD increases e(k), which
in turn decreases the step size 7(k) and the algorithm is stabi-
lized. On the other hand, when p is very small (bottom of the
diagram) (k) goes toward negative values, increasing (k) and
speeding up convergence of the algorithm.

IV. CONCLUSION

A generalized normalized gradient descent algorithm for
linear adaptive filters has been proposed. It has been derived as
an extension of the normalized least square algorithm where
the learning rate comprises an additional adaptive factor, which
stabilizes NLMS and makes GNGD suitable for filtering of
nonlinear and nonstationary signals. Unlike the previously
proposed gradient adaptive step size algorithms, GNGD has
been shown to be robust to the initialization of its parameters.
Simulations on stationary, nonstationary and nonlinear signals
justify the proposed approach.
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APPENDIX

The algorithm proposed in [3] is based upon a gradient adap-
tation of the learning rate 1 of LMS from (2) by steepest descent,
based upon OE(k)/Ou. The step size update in Mathews’ algo-
rithm, which utilizes the independence assumptions, is given by

P 7]
W) =plk = 1) = G5y
= pu(k = 1) + pe(k)e(k — x" (k)x(k — 1) (12)

¢*(k)

and is shown to be very sensitive to the choice of initial values
of p and p(0) [3], [5]. Given by
(k) = p(k — 1) + pe(k)xT (k)p(k)
(k) = [T - p(k — Dx(k - Dx" (k - 1)]
k-1 +elk—1Dx(k-1) (13)
Benveniste’s algorithm is based upon the exact derivation of the

adaptive learning rate and is computationaly demanding, since
it requires matrix multiplications.
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