
Problem Set #1
ECE-595, Section II

Spring 2013, Adaptive Filtering
Date Assigned: 02/07/2013
Date Due: 02/21/2013

Background

In class, we discussed the popular LMS algorithm and several of its variants. In this MATLAB exercise, we
will simulate several of the variants of the LMS:

• Normalized LMS algorithm (NLMS)

• Adaptive step-size LMS (from your text)

• Leaky LMS algorithm

• Adaptive step-size NLMS.

• Data-reuse NLMS algorithm

We specifically wish to study their performance in predicting a second-order autoregressive process, i.e., AR(2)
process, where we will be deploying the LMS as an adaptive predictor. Towards this purpose, first write four
MATLAB function nlms.m, aslms.m, llms.m, asnlms.m, drnlms.m that implement the different variants.
I have uploaded some of these functions to the course webpage. For studying the tracking performance of
the algorithms, generate a random sequence that has a different set of AR coefficients over two separate,
non-overlapping halves of the same signal.

Comparison of Performance

Compare the performance of the standard LMS algorithm with that of the leaky LMS algorithm for two
different step-size factors and two different leakage factors. Accomplish this by comparing the average tap-
weights and the MSE, over 100 experiments. For the second part, compare the performance of the standard
LMS with the two adaptive step-size algorithms and the NLMS. Again evaluate their performance by comparing
the average tap-weight behavior and the MSE for both small and larger step-sizes for both: (a) low SNR but
stationary and (b) time-varying AR coefficients and higher SNR environments. Document your observations
in terms of the advantages or problems of the different approaches.

1 MATLAB functions

1.1 LMS Algorithm

%**

% MATLAB Implementation of the LMS Algorithm

% AUTHOR: Balu Santhanam

% DATE : 03/25/03

%

% SYNOPSIS :

% [filco,y,MSE] = lms_co(u,d,mu,L,init)

%**

function [filco,y,MSE] = lms_co(u,d,mu,L,init)

if nargin == 4

init = zeros(1,L);

elseif nargin < 4

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

γ = 0

γ = 0.01

γ = 0.0001

TIME SAMPLES

T
A

P
 W

E
IG

H
T

 T
R

A
C

K
S

,
 L

E
A

K
Y

−
LM

S

µ = 1.15, a[1] = 1.5, a[2] = −0.49, N = 2000

(a)
0 500 1000 1500

−30

−25

−20

−15

−10

−5

0

γ = 0.001

γ = 0

γ = 0.01

ITERATION INDEX

M
S

E
 (

dB
),

LE

A
K

Y
−

LM
S

µ = 1.15, a[1] = 1.5, a[2] = −0.49, N = 2000

(b)

Figure 1: Comparison of the leaky-LMS with the LMS: (a) tap-weight tracks of the leaky-LMS for µ = 1.15 for
different γ factors and (b) corresponding MSE curves for different leakage factors. The leaky-LMS produces
a biased solution while the LMS algorithm, i.e., γ = 0 will converge to the optimal Wiener solution.

error(’Insufficient number of input parameters’)

end

X = convmtx(u,L).’; % Form Toeplitz convolution matrix

filco(1,:) = init(:).’; n = length(u);

for p = 2:n-L+1

y(p) = filco(p-1,:)*X(p,:).’;

e(p) = d(p) - y(p);

filco(p,:) = filco(p-1,:) + mu*e(p)*conj(X(p,:));

MSE(p) = e(p)^2;

end

%**

1.2 Leaky LMS Algorithm

%**

% MATLAB Implementation of the LMS Algorithm

% AUTHOR: Balu Santhanam

% DATE : 03/25/03

%

% SYNOPSIS :

% [filco,y,MSE] = leak_lms(u,d,mu,gam,L,init)

%**

function [filco,y,MSE] = leak_lms(u,d,mu,gam,L,init)

if nargin == 5

init = zeros(1,L);

elseif nargin < 5

error(’Insufficient number of input parameters’)

end

X = convmtx(u,L).’; % Form Toeplitz convolution matrix

filco = zeros(length(d),L);

filco(1,:) = init(:).’; n = length(u);

MSE = zeros(1,length(d)); MSE(1) = 1;

for p = 2:n-L+1

y(p) = filco(p-1,:)*X(p,:).’;

e(p) = d(p) - y(p);

filco(p,:) = (1-mu*gam)*filco(p-1,:) + mu*e(p)*conj(X(p,:));

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

ITERATION INDEX n

A
V

E
R

A
G

E

T
A

P

W
E

IG
H

T

T
R

A
C

K
S

nexp = 80, ntap = 2, β = 0.01, σ
v
 = 0.05,

(a)
0 200 400 600 800 1000

−30

−20

−10

0

10

20

30

ITERATION INDEX n

LE
A

R
N

IN
G

 C
U

R
V

E
 M

S
E

 (
dB

)

nexp = 80, ntap = 2, β = 0.01, σ
v
 = 0.05,

(b)

Figure 2: Performance of the NLMS: (a) average tap-weight tracks for the NLMS algorithm obtained by
averaging over 80 experiments, and (b) learning curves for different step-size parameters.

MSE(p) = e(p)^2 + gam*norm(filco(p,:),2)^2;

end

%---

1.3 Normalized LMS Algorithm

%%

% This function is an implementation of the

% NLMS algorithm and returns the tap weights

%

% AUTHORS : Santhanam Balasubramaniam

% DATE : 04/19/94

%

% USAGE : [filco,y,MSE] = nlms_co(x,d,alfa,bet,ntap)

% filco : Filter Coefficients matrix

% err : Estimation error

% MSE : Mean Square Error (dB)

% x : Observation Process (1,N)

% d : desired process (1,N)

% ntap : Number of taps in the filter

% alfa : Step size parameter (0 - 2)

% bet : Offset parameter (typ: 0.01)

% y : Filtered output

%%%

function [filco,y,MSE] = nlms_co(x,d,alfa,bet,ntap)

format lon

x = x(:).’; d = d(:).’;

N = length(x); X = convmtx(x,ntap).’;

W(1,:) = zeros(1,ntap); [M,N] = size(X);

out = zeros(1,N); MSE(1) = 1;

for k = 2:1:M-ntap+1

mu = alfa / ((X(k,:) * X(k,:).’) + bet);

out(k) = W(k-1,:)*X(k,:).’;

error(k) = d(k) - out(k);

W(k,:) = W(k-1,:) + mu*conj(X(k,:))*error(k);

MSE(k) = error(k)^2;

end

filco = W;

y = out;

return

%%

1.4 Variable Step Size NLMS

0 200 400 600 800 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ITERATION INDEX n

A
V

E
R

A
G

E

T
A

P

W
E

IG
H

T

T
R

A
C

K
S

nexp = 80, ntap = 2, α = 1.95, σ
v
 = 0.05, N = 1000,

ρ = 0.01

ρ = 0.5

ρ = 0.9

(a)
0 200 400 600 800 1000

−30

−20

−10

0

10

20

30

40

50

60

ITERATION INDEX n
LE

A
R

N
IN

G
 C

U
R

V
E

 M
S

E
 (

dB
)

nexp = 80, ntap = 2, α = 1.95, σ
v
 = 0.05, N = 1000,

ρ = 0.01

ρ = 0.5

ρ = 0.9

(b)

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

ITERATION INDEX n

A
V

E
R

A
G

E

T
A

P

W
E

IG
H

T

T
R

A
C

K
S

nexp = 80, ntap = 2, ρ = 0.01, σ
v
 = 0.05, N = 1000,

α = 1.0

α = 1.99

(c)
0 200 400 600 800 1000

−30

−25

−20

−15

−10

−5

0

5

ITERATION INDEX n

LE
A

R
N

IN
G

 C
U

R
V

E
 M

S
E

 (
dB

)

nexp = 80, ntap = 2, ρ = 0.01, σ
v
 = 0.05, N = 1000,

α = 1.0

α = 1.5

α = 1.99

(d)

Figure 3: Performance of the variable step-size NLMS: (a,b) average tap-weights and learning curves for a
fixed α for different learning rates, (c,d) average tap-weights and learning curves for a fixed learning rate for
different α. Note the divergence of the tap-weights when the learning rate is too high.

%%

% This function is an implementation of the

% generalized NLMS algorithm (SPL-04)

%

% AUTHORS : Santhanam Balasubramaniam

% DATE : 10/05/05

%

% USAGE [filco,out,MSE,eta] = gnlms(x,d,alpha,rho,ntap);

%

% ifreq1,ifreq2 : estimated IF tracks

% eta : learning rate

% MSE : Instantaneous Mean Square Error (dB)

0 500 1000 1500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

ITERATION INDEX n

A
V

E
R

A
G

E

T
A

P

W
E

IG
H

T

T
R

A
C

K
S

nexp = 120, ntap = 2, α = 1.8, ρ = 0.00001, σ
v
 = 0.05, N = 1500

(a)
0 500 1000 1500

−30

−20

−10

0

10

20

30

40

ITERATION INDEX n

LE
A

R
N

IN
G

 C
U

R
V

E
 M

S
E

 (
dB

)

nexp = 120, ntap = 2, α = 1.8, ρ = 0.00001, σ
v
 = 0.05, N = 1500

(b)

Figure 4: Tracking performance of the variable step-size NLMS: (a) average tap-weight tracks for the NLMS
algorithm obtained by averaging over 120 experiments, and (b) learning curves for different step-size parame-
ters. The AR coefficients over the first half of the observations are different from the AR coefficients during
the second half. Note the switch in the tap-weights at the mid-point of the signal duration and the eventual
readaptation.

% ntap : Number of taps in the filter

% alpha : Step size parameter (0 - 2)

% rho : Offset parameter learning rate (typ: 0-1)

%%%

function [filco,out,MSE,eta] = gnlms(x,d,alpha,rho,ntap)

format long

x = x(:); d = d(:);

N = length(x); X = convmtx(x,ntap);

% Initialization

W(1,:) = zeros(1,ntap);

[M,N] = size(X); beta(1) = 0.01;

out = zeros(1,N); MSE(1) = 1;

for k = 2:1:M-ntap+1

out(k) = W(k-1,:)*X(k,:).’;

e(k) = d(k) - out(k);

cfactor(k) = e(k)*e(k-1)*X(k,:)*X(k-1,:).’;

num = rho*alpha*cfactor(k);

den = X(k-1,:)*X(k-1,:).’ + beta(k-1);

beta(k) = beta(k-1) - num/den;

clear num den cfactor out

eta(k) = alpha / ((X(k,:) * X(k,:).’) + beta(k));

W(k,:) = W(k-1,:) + eta(k)*conj(X(k,:))*e(k);

MSE(k) = e(k)^2;

end

filco = W;

clear beta e

%%

1.5 Data Reuse Normalized LMS Algorithm

In situations, where the signal environment is correlated, noisy and non-stationary, the data-reuse LMS may
be beneficial. Simulate an observation process that has a high degree of correlation between samples. Write a
MATLAB function drnlms.m that implements the data-reuse version of the NLMS. Compare the performance
of the NLMS with and without data reuse for L = 3.

