LMS Algorithm: Motivation

- - Only a single realization of observations available.
 - Statistics need to be estimated.
 - Need to estimate the gradient vector
 - Elaborate estimation : delay in tap-weight adjustment.
 - Simplicity: real-time applications possible.

worsily of Now Mexico

LMS Algorithm

Estimate of gradient used:

$$\widehat{\mathbf{g}}[n] = e[n]\mathbf{u}^*[n].$$

Estimate of gradient unbiased:

$$E\{\hat{\mathbf{g}}[n]\} = E\{e[n]\mathbf{u}^*[n]\} = \mathbf{g}[n].$$

Gradient estimate contains gradient noise:

$$\hat{\mathbf{g}}[n] = \mathbf{g}[n] + \mathbf{v}_g[n].$$

Tap-weight converges in the mean :

$$\lim_{n\to\infty} E\{\mathbf{w}[n]\} = \mathbf{w}_{\mathsf{opt}}$$

LMS Algorithm

Use instantaneous estimates for statistics:

$$\widehat{\mathbf{R}}_{uu}[n] = \mathbf{u}^*[n]\mathbf{u}^T[n], \quad \widehat{\mathbf{r}}_{du}[n] = d[n]\mathbf{u}^*[n].$$

Filter output:

$$y[n] = \mathbf{w}^T[n]\mathbf{u}[n].$$

Estimation error:

$$e[n] = d[n] - \mathbf{w}^{T}[n]\mathbf{u}[n]$$

Tap-weight update:

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \mu e[n]\mathbf{u}^*[n]$$

LMS Algorithm

• Given w[0] = 0 for the LMS filter:

$$\mathbf{w}[n] = \mu \sum_{k=0}^{n-1} e[k] \mathbf{u}^*[k].$$

Input-output relation nonlinear:

$$y[n] = \mathbf{w}^T[n]\mathbf{u}[n] = \mu \sum_{k=0}^{n-1} \mathbf{u}^T[n]e[k]\mathbf{u}^*[k].$$

Feedback in recursive tap-weight update makes stability considerations important.

- LMS: Independence Theory
- Tap inputs u[n] comprised of statistically independent random vectors.
- Tap inputs u[n] independent of previous samples of the desired process d[n].
- Tap inputs u[n] and desired process d[n] jointly Gaussian distributed.
- Assumptions violated in certain applications but sufficient for obtaining general design guidelines.

Average Tap-weight Behavior

LMS tap-weight update:

$$w[n+1] = w[n] + \mu e[n]u^*[n].$$

■ Tap-weight error update:

$$\epsilon[n+1] = (\mathbf{I} - \mathbf{u}^*[n]\mathbf{u}^T[n])\epsilon[n] + \mu e_o[n]\mathbf{u}^*[n].$$

Average tap-weight trajectory:

$$E\{\epsilon[n+1]\} = (\mathbf{I} - \mu \mathbf{R}_{uu}) E\{\epsilon[n]\}$$

LMS: Independence Theory

- Tap-weight vector w[n] depends only on:
- Prior tap-input samples
 - (ii) Prior desired process samples
 - (iii) Initial tap-weight: w[O].
- w[n+1] is independent of d[n+1], u[n+1]

Convergence in the Mean:

■ LMS algorithm converges in the mean provided:

$$0 < \mu < \frac{2}{\lambda_{\text{max}}}$$

Alternative more useful bound:

$$0 < \mu < \frac{2}{LE\{|u[n]|^2\}}.$$

Estimate average power via:

$$E\{|u[n]|^2\} \approx \frac{1}{N} \sum_{k=0}^{N-1} |u[k]|^2.$$

$$P_{\text{ave}}[n] = \rho P_{\text{ave}}[n-1] + (1-\rho)|u[n]|^2.$$

Convergence in the MS sense

Unlike the SDA algorithm, the LMS algorithm does not converge to the Wiener solution in the MS sense:

$$\lim_{n\to\infty} J(\mathbf{w}[n]) = \epsilon_{\min}^2 + J_{\text{excess}}.$$

- The excess mean-squared error is the price that the designer pays for the simplicity of the LMS algorithm.
- Tap-weight error with respect to zero-order solution:

$$\epsilon[n+1] = (\mathbf{I} - \mu \mathbf{R}_{uu})\epsilon[n] - \mu e_o[n]\mathbf{u}^*[n]$$

Misadjustment of LMS

■ Misadjustment is normalized excess MSE:

$$M = \frac{J_{\text{excess}}}{J_{\min}} = \frac{J(\infty)}{J_{\min}}.$$

■ Misadjustment proportional to μ for small μ :

$$M pprox rac{1}{2} \mu \mathrm{Trace}(\mathbf{R}_{uu}).$$

lacksquare Misadjustment inversely proportional to τ_k

Convergence in the MS sense.

Tap-weight error in canonical coordinates:

$$\mathbf{q}[n+1] = (\mathbf{I} - \mu \mathbf{\Lambda})\mathbf{q}[n] + \mathbf{V}^H e[n]\mathbf{u}^*[n].$$

Stochastic force vector has zero mean:

$$E\{\Phi[n]\} = E\{\mathbf{V}^H e[n]\mathbf{u}^*[n]\} = \mathbf{0}$$

■ Covariance of stochastic force vector is diagonal:

$$E\{\Phi[n]\Phi^H[n]\} = \mu^2 \epsilon_{\min}^2 \Lambda.$$

 ϵ [n] executes Brownian motion about optimal solution.