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Analysis of Conjugate Gradient Algorithms for
Adaptive Filtering

Pi Sheng Chang, Member, IEEE,and Alan N. Willson, Jr., Fellow, IEEE

Abstract—This paper presents and analyzes two approaches to
the implementation of the conjugate gradient (CG) algorithm for
adaptive filtering where several modifications to the original CG
method are proposed. The convergence rates and misadjustments
for the two approaches are compared. An analysis in the-domain
is used in order to find the asymptotic performance, and stability
bounds are established. The behavior of the algorithms in finite
word-length computation are described, and dynamic range con-
siderations are discussed. It is shown that in finite word-length
computation and close to steady state, the algorithms’ behaviors
are similar to the steepest descent algorithm, where the stalling
phenomenon is observed. Using 16-bit fixed-point number repre-
sentation, our simulations show that the algorithms are numeri-
cally stable.

Index Terms—Adaptive filtering algorithms, conjugate gradient
method.

I. INTRODUCTION

I N RECENT years, many adaptive filtering algorithms based
on the conjugate gradient (CG) method of optimization have

been reported [3], [4], [7], [9], [11], [15], [16]. In these works,
several modifications have been proposed to improve the perfor-
mance of the CG algorithm for various applications, but usually,
the analysis of the proposed algorithms has not been shown. It is
well known that the CG algorithm has a faster convergence rate
than steepest descent [2], [12] and that it also has lower compu-
tational complexity when compared with the classic recursive
least squares (RLS) algorithm [3], but mostly, its analysis can
only be found in the optimization and matrix computation liter-
ature. Here, we will describe, from the signal processing point
of view, two of the CG algorithm implementations and analyze
their performance in steady state. Some related implementation
ideas can also be found in [3] and [7]. In addition, their perfor-
mance under finite word-length effects will be discussed. Due to
the highly nonlinear nature of the algorithms, a linearized quan-
tization model as used in the analysis of the LMS [6], NLMS
[8] and RLS [5] algorithms, in general, cannot be applied.

In Section II, properties of the CG method of optimization
will be discussed, and ways to implement the algorithm effi-
ciently in the adaptive filtering context will be described. Sec-
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tion III compares and analyzes two implementations, and Sec-
tion IV shows our simulation results.

II. DERIVATION OF THE ALGORITHM

The CG method can be applied to adaptive transversal filters
as shown in [3], [15]. Doing this, the objective becomes the
solving of

(1)

where is the correlation matrix of the input data vector
, and is the cross-correlation vector between the input

data and the desired response If and are estimated
as in [13] for the least-squares (LS) problem, the CG method
offers an alternative way to solve for instead of inverting the
matrix If they are estimated as in [3], where a sliding data
window is used, then the CG method can be viewed as a sto-
chastic gradient-based method. Many adaptive filtering appli-
cations require the weight coefficients to be updated at each in-
coming data sample. Although, with previously developed CG
algorithms, this can be done at the expense of running several
iterations per sample, we propose modifications here that will
allow the algorithm to run just one iteration per sample but still
maintain performance comparable with RLS or LMS-Newton.
One of the main difficulties of the RLS and the LMS-Newton
algorithms is the necessity to estimate If the estimated

loses the property of positive definiteness, that will cause
the algorithm to diverge [13]. This does not happen with the CG
method since there is no need to compute the inverse ofThe
basic CG algorithm can be described as follows [12], [17] after
some rearrangement for improved clarity:
Initial conditions:

while
begin

(2)

(3)

(4)

(5)

(6)

(7)

end
where is the step size that minimizes the cost function
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(see Section II-A), provides -orthogonality for
the direction vector is the residual vector defined as

(8)

with denoting the gradient of the functionand denoting
the iteration number.

The formulation above has several desirable properties such
as the following.

1) -orthogonality or conjugacy with respect to of the
vectors [2], [12], [17], i.e.,

for all (9)

2) Orthogonality of the gradient (residual) vectors [2], [12]:

for (10)

3) The so-called expanding subspace theorem [17], where
the residual vectors satisfy

for (11)

4) The finite termination property [2], [14], [17], where

(12)

is sufficient for the algorithm to minimize
5) The descent property, which is given by [10]:

(13)

To see that the CG algorithm satisfies the descent property, we
post-multiply the transpose of (7) by

(14)

and recognize that the second term on the right-hand side is zero,
due to (11).

Variations of the algorithm described in (2)–(7) can be found
in [2], [12], [14], and [17], where it is shown that one can use an
iterative method to terminate the algorithm, instead of using the
fixed iterations, or use different ways to computeα andβ.

An alternative expression for the computation ofα is given
by

(15)

This expression is obtained by post-multiplying the transpose of
(5) by , resulting in

(16)

which leads to (15) after using (11). If we further substitute (14)
into (15) and use (11) one more time, we get (3). In the presence
of computational errors, (11) will not beexactlyzero, and using
(15) rather than (3) will result in less computational error in the
algorithm.

The existence of only one matrix-vector multiplication in
(2)–(7) is possible due to the use of a recursive formulation for
the residual vector [12], [15]

(17)

This expression can be found by substituting (4) into (8) and by
assuming that and are constant throughout the itera-
tions, which is applicable for the case of block processing. It has
been used in [15] and [18]. Here, we propose modifications that
allow it to be used in nonblock processing or sample-by-sample
updating. Notice that the iteration numberwill be replaced by
the time instant since, after the proposed modifications, only
one iteration will be performed per time instant.

A. Considerations About the Cost Function

When the CG algorithm is used to solve (1), it is indirectly
minimizing a cost function defined as

(18)

The way and are estimated will directly influence the per-
formance of the algorithm. There are two ways that we can com-
pute and by using different schemes of data windowing.

1) Finite Sliding Data Window:In this case, only the data
samples inside a window of finite length are used. The cor-
relation matrix and the cross-correlation vector are estimated by
the time ensemble averages

The residual vector is then computed as

(19)

(20)

The formulation in (20) is computationally more efficient than
(19) if is smaller than , which is the length of the input data
vector

2) Exponentially Decaying Data Window:By using the
exponentially decaying data window, the resulting correlation
function is the same as the one used by the RLS algorithm.
When used with the CG algorithm, a performance comparable
to the RLS algorithm can be achieved. The correlation and
cross-correlation functions are given by

(21)

and

(22)

where is the forgetting factor. For sample-by-sample pro-
cessing, a recursive formulation for the residual vector can be
found by using (4), (8), (21) and (22), resulting in

(23)
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B. Termination

There are many schemes proposed in the literature to
terminate the CG algorithm. In [12], an iterative scheme was
proposed, based on the norm of the residual and a maximum
number of iterations. In [3], the algorithm terminates after

iterations, due to the use of a finite sliding data
window in the computation of and, consequently, the residual
vector. Either way, the CG algorithm has to run several itera-
tions per data update in order to converge. This is not a problem
when block processing is used, but in sample-by-sample
updating, the procedure is computationally costly. One way to
employ just one iteration per coefficient and data update is to
use somedegeneratedscheme. By degeneration, we mean that

will not be completely orthogonal to the subspace spanned
by or, in other words, ,
for , will not hold. Some other examples of degenerated
schemes are a) using a constant value forα and b) using a
nonconstant matrix at each iteration. For the former, it is
well-known that usingα, as given in (3), minimizes the cost
function on the line , whereas

will not be completely minimized using a constant
value forα. By using a nonconstant matrix at each iteration,
the algorithm can be used in a nonblock adaptation scheme.
The new update of the residual in this case is given by (23).

C. Line Search

In the CG algorithm,α is the step size used in the update of
the weight vector, as shown in (4). The value ofα is usually
chosen so that is minimized. Explicitly
computingα for the cost function shown in (18) results in (3).
This is an exact line search along the direction Inexact line
search schemes with reduced complexity can also be used, but
they must satisfy the convergence bound given in the Appendix.
When the exponentially decaying data window is used, we have

(24)

Notice that using instead of ,
as shown in (3), is less effective for the degenerated scheme (see
the Appendix).

Another expression for , which preserves orthogonality
or the so-calledexpanding subspace theorem[17] by ensuring
that , is given by

This is obtained by premultiplying (23) by
and applying (11). Note that this also minimizes

D. Resetting the Algorithm

For sample-by-sample processing, it is important to periodi-
cally reset the direction vector to the true gradient in order
to ensure the convergence of the algorithm. The degenerated
scheme will not allow the algorithm to converge in steps.

TABLE I
MODIFIED CG ALGORITHM

How often the algorithm is reset will influence its performance.
If using a certain set of direction vectors does not increase
the cost function, then global convergence can be assured since
a true steepest-descent step is taken every time the algorithm is
reset. A non-reset method can also be used, but the Polak-Ri-
biere method [10], [17], [20] for the computation of, which is
given by

(25)

should be used for improved performance. Simulations have
shown that (25) performs better than (6) when using a degen-
erated scheme because will not be exactly zero.
Table I shows an implementation of the algorithm, taking into
account some of the considerations discussed.

III. A NALYSIS OF THECONJUGATEGRADIENT ALGORITHM

In the previous section, we presented several approaches to
the implementation of the CG algorithm in adaptive filtering.
Here, we will analyze two of the proposed approaches. The first
one, which we call CG1, assumes a variable autocorrelation ma-
trix and cross-correlation vector, which are updated for
each input data sample, and only one iteration of the algorithm is
performed per time instant. The second approach assumes con-
stant and within the internal iterations, and or fewer in-
ternal iterations are performed per input data sample, where
is the dimension of We call this algorithm CG2.

It has been shown in the quadratic optimization literature that
the CG algorithm converges in finite steps for constantand
[2], [12]. This is used in the analysis of the algorithm CG2 and
the algorithm presented in [3]. The advantage of CG2 is that
the convergence rate is independent of the eigenvalue spread of

, whereas the disadvantage is that, when a finite data window
is used to estimate the autocorrelation and cross-correlation, the
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output mean-squared error is dependent on the length of the data
window.

In the algorithm CG1, which was previously reported in [7],
both finite data windows and exponentially decaying data win-
dows can be used, although the latter gives better performance
due to the resulting better estimation of and , as will be
shown in Section IV.

A. The Conjugate Gradient Algorithms

Algorithm CG1: The CG algorithm using the first approach
is shown in Table I, where it minimizes a cost function defined
as is the

sample correlation matrix of the input data vector
computed as in (21), and is the cross-correlation
vector computed as in (22).

In state-space notation, the algorithm CG1 can be written as
shown in the first equation at the bottom of the page.

Algorithm CG2: Following the same approach used in [3]1

and in Section II, the second CG algorithm can be described as
follows:

Set initial condition:
For each time instant, compute:
Start:

(26)

for to do:

1The algorithm presented in [3] has a different formulation for�(k);g(k);
andp(k + 1), but, computationally, it has the same behavior as the algorithm
CG2 described here.

After iterations, do:

goto Start.
Notice that is fixed throughout the iterations, and

only the final vector is of interest. Here,
since if , there are only distinct di-

rection vectors [3].
In state-space notation, CG2 can be written as the second

equation at the bottom of the page, where is the unit-sample
sequence.

B. CG Algorithm in Signal-Flow-Graph Representation and
Asymptotic Analysis

Using the state-space representation given previously, we can
view the CG algorithms as nonlinear time-varying digital fil-
ters. First consider the algorithm CG1, and in order to simplify
its analysis, it is assumed that the input signal is wide-sense sta-
tionary and ergodic, , ,
and , where denotes the expected value
of , and , , , and are
assumed to be statistically independent with respect to each
other. With the expectation operator applied to the state vari-
ables, we can view the system as being linear and time invariant.
Furthermore, let us define

and , where is the
-transform of , and note that (52) can also be written as

(27)

where is the unit-step sequence.
Now, we can find the transfer function for using (51)

and (54) in Table I and (27). The signal-flow-graph representa-
tion of these three equations is shown in Fig. 1, where we have,
after taking the expectation on both sides of these equations and
then the -transform:

(28)

(29)

(30)
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Fig. 1. Signal-flow graph representation of the CG algorithm.

Solving for , we get

and knowing that , which is the one-sided
transform, we can use thefinal value theorem[19], which leads
to

(31)

The above limit exists if is stable; therefore, we
must have and the roots of

(32)

must lie inside the unit circle. Expression (31) shows that
will converge to for , where is

the optimum weight vector. We can apply a unitary trans-
formation to so that and, knowing that

, where is a diagonal matrix whose
elements are the eigenvalues of , (32) becomes

(33)

Looking at each second-order term of (33) to ensure that the
roots of the second-order term lie inside the unit circle in the
-plane, we must have

A sufficient condition for the stability of the system described
by (28)–(30), where the poles of the system are the roots of (33),
is

(34)

For , we have

(35)

which agrees with the results obtained for thesteepest descent
algorithm [13]. For Algorithm CG2, since and are
constant throughout the iterations, the analysis presented in
[2] and [12] can be readily applied.

C. Convergence and Misadjustment

First, consider the algorithm CG1, where an exponentially de-
caying data window is used for the computation of and

, and the updated weight-vector is obtained as the result
of a single iteration. The convergence rate will depend on the
eigenvalue spread. Using variable for each iteration re-
duces substantially the computational complexity of the algo-
rithm. In steady state, as , the misadjustment for the
algorithm CG1 will be equal to the misadjustment of the RLS
algorithm since both algorithms minimize a cost function given
by

where
Next, consider Algorithm CG2, where a finite-length data

window is used for the estimation of and The convergence
rate does not depend on the eigenvalue spread of the correlation
matrix because of the way the algorithm is implemented, where
the updated weight vector at each time instantis the last up-
dated weight vector after iterations. Therefore, we have,
considering that the algorithm converges after the itera-
tions

(36)

This means that at each time instant, is the optimum
solution for the given and so that the convergence
of the algorithm in will not depend on the convergence of the
algorithm in

Now, for the analysis of the misadjustment of Algorithm
CG2, consider it being used in the system identification
(SI) configuration. The desired response is the output of the
FIR filter with optimum weight coefficients (plant) given by

when there is no measurement noise. The
output error of the system is

and the mean-squared error is

tr

where , and [13].
For the SI configuration with white Gaussian noise as the input
signal, , and we have

tr (37)

When using and to estimate and , we have to
consider the variance of the estimators. The greater the variance,
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the “noisier” the resulting weight-vector will be. After it-
erations, we have

(38)

This is equivalent to saying that the norm of the residual vector
satisfies

where can be made arbitrarily small [2]. Consider the case
when so that for , where is
an element of Then, (38) becomes

where and are the elements of and ,
respectively.

Now, consider the inequality presented in [12] that shows a
bound for the norm of the weight-error vector

(39)

where is the condi-
tion number, and in the context presented here.
Using and taking the expectation of
both sides of (39), we have and since

, we can conclude that , which shows
that the weight-vector is convergent in the mean.

The variance of the weight-vector is given by

var

Due to the computation of using the CG algorithm, it is
difficult to find the variance of directly from the algo-
rithm because of its iterative nature. Here, we will consider

var var var (40)

which provides a good approximation for the variance of ,
as shown in our simulations.

Consider now the notation of the input data vector as

...
...

Then, we can write

(41)

and

The variance of is given by2

var

(42)

where is the fourth-order central moment [21],
considering that

To compute the variance of , we first notice that

so that

Now, consider

because for when Therefore, we have

(43)

Comparing (43) with (42), it is easy to see that

var (44)

2A similar procedure used to determine the variance of an estimator is shown
in [21].
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For Gaussian input signals, the kurtosis of the signal,
is 3, so we have , and the mean-

squared error is given by

var

This shows the dependence of the misadjustment on the length
, as has been suggested in the simulation results in [3].

Table II shows the performance of CG2 for various values of
As increases, the theoretical results converge to the sim-

ulation results, showing that (40) is a suitable approximation
for the analysis developed here. Further results are shown in
the next section.

D. Finite Word-Length Effects

Due to the nonlinear nature of the CG algorithm, it is not pos-
sible to use additive quantization noise to model the quantiza-
tion effects, as has been done in [5], [6], and [8]. Quantizing the
variables in the CG algorithm will lead some of them to become
zero, changing completely the behavior of the algorithm. This is
particularly true for the variables and Consider, for
example, as in (53), in fixed-point computation. In order
to be able to update , it is necessary to have

or

which implies that we should have

or

where is the number of bits used to represent the fractional
part of a number in fixed-point notation [6], [8], and is the
quantization operation. This implies that each element of
given by must satisfy

which means that only half of the dynamic range of is
used in the computation of Usually, when the algorithm
converges, the residual vector will be close to zero. Due
to quantization, the new value of will be zero, and

TABLE II
PERFORMANCE FORVARIOUS LENGTHS OFDATA WINDOWING

� = 0:25; N = 5; kw k = 1:3071 WITH NO MEASUREMENTNOISE, AND

WITH RESULTSAVERAGED OVER 50 INDEPENDENTTRIALS

Fig. 2. �(n) in fixed-point computation.

Fig. 3. �(n) in fixed-point computation.

will not be updated by the additional term. The algorithm,
under these circumstances, will behave like the steepest descent
algorithm, where will be equal to the residual vector

Figs. 2 and 3 show the values of and for a
single run of CG1 in fixed-point arithmetic with

, and SNR 30 dB, using 10
bits for the fractional part and six bits for the integer part of the
number representation.
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TABLE III
CG ALGORITHM USING DIFFERENTIMPLEMENTATIONS OFβ AND RESET

SCHEMES. � = 0:99; SNR= 30 dB,� = 1

E. Dynamic Range

As previously observed, for the computation of , only
half of the dynamic range is effectively used. This also hap-
pens with the fixed-point computation of due to the inner
product appearing in its numerator. When is zero due to
quantization, the algorithm stops updating the weight-vector.
This is known as thestalling phenomenon[6], [8].

Now, consider the computation of Rewriting (21), we
can see that

and

For values of close to one, is large, and extra bits
would be required to correctly compute without satura-
tion. A normalized version given by

is preferred in this case, and the new residual vector will become

It has been shown in the literature that the vector can
also be normalized, resulting in the so-called normalized CG
algorithm [14], where we have

While this normalization might be useful in floating-point com-
putation by limiting the dynamic range, it is not very effective
under fixed-point computation due to the quantization effect ex-
plained previously. When the algorithm is close to convergence,

will be small and, when quantized, will become zero.

IV. SIMULATIONS

Several simulations were performed using the two basic con-
figurations [13]: system identification (SI) and linear prediction

TABLE IV
PERFORMANCE FORDIFFERENTIMPLEMENTATIONS OFα AND VALUES OF η.

SNR= 20 dB,� = 0:99

TABLE V
TESTING THECONVERGENCECRITERION FORDIFFERENTVALUES OF� : THE

ALGORITHM BECOMESUNSTABLE FORVALUES OF η GREATER THAN OR

EQUAL TO THE ONES SHOWN. SNR= 10 dB,� = 1

Fig. 4. Simulations using SI configuration.� = � = 0:99; SNR= 20 dB.

(LP). All simulations were ensemble averaged over 100 inde-
pendent trials.

First, we simulated several implementations discussed in Sec-
tion II, where we considered an SI configuration with the un-
known plant being an FIR filter of order 20 and the variance of
the white Gaussian input signal Table III compares the
performance for different reset schemes. It is shown that using
a non-reset scheme the algorithm performs badly due to the loss
of orthogonality between and Table IV compares the
performance for different implementations ofα and values of
η, showing that when orthogonality is not attained, such as in
the degenerated scheme, the formulation ofα in (47), given in
the Appendix, is preferable to that of (49). Table V shows the
validity of the convergence criterion given in the Appendix. It
can be seen that this simple criterion is sufficient to guarantee
the stability of the algorithm. Fig. 4 compares the performance
of the RLS, the CG and the normalized LMS algorithms, where
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TABLE VI
PERFORMANCE FORDIFFERENTWINDOWING SCHEMES. SNR= 20 dB,

� = 1 AND � = 0:7

Fig. 5. Simulations using LP configuration.� = � = 0:99; SNR= 30 dB.

1 and 0.1. These step sizes give the fastest conver-
gence rate and give misadjustment comparable with the RLS
algorithm in steady state, respectively. Table VI compares the
MSE due to the use of various data windowing schemes. In
the case shown, using the exponentially decaying data window
gives a better performance result than using the finite-length
data window. Here, the plant used is a fifth-order FIR filter with
an eigenvalue spread of 46.

Finally, simulations were performed using the LP configu-
ration. Fig. 5 shows the simulation results, where
1 and 0.01, with and SNR 30 dB. The
second-order AR model used has an eigenvalue spread of 100.
Again, 1 gives the fastest convergence rate, whereas

0.01 gives comparable misadjustment to that of the
RLS algorithm in steady state.

V. CONCLUSION

Several modifications to the conjugate gradient algorithm
for adaptive filtering have been described. The algorithms can
have the same performance as some high-convergence-rate
algorithms such as the RLS and LMS-Newton, with the ad-
vantage that there is no need to perform matrix inversion or to
estimate It has been shown that there are several ways to
implement the algorithm, leading to different results. Several
simulations were carried out to illustrate the performance
for different implementation choices. Two methods of data

windowing were considered: the finite sliding window and the
exponentially decaying window. With the first, the convergence
rate is fast, but misadjustment is high. By using an exponen-
tially decaying window, it is possible to simultaneously attain
a fast convergence rate and low misadjustment. A convergence
criterion has been given, which provides a sufficient condition
that guarantees the stability of the algorithm.

Two approaches to the implementation of the conjugate
gradient algorithm have been analyzed, and their convergence
rate and misadjustment were compared. A-domain approach
was used to find the asymptotic performance, and stability
bounds for and were established. Finally, the behavior
of the algorithms in finite word-length computation were
described, and dynamic range considerations were discussed.
It has been shown that close to steady state, the algorithms’
behaviors are similar to the steepest descent algorithm, where
the stalling phenomenon has also been observed. Using 16-bit
fixed-point number representation, the simulations have shown
that the algorithms are numerically stable.

APPENDIX

For the CG algorithm, a descent property given by

should hold in order to guarantee convergence [1]. A looser con-
dition can be set if the following is used:

Premultiplying (23) by gives

Taking the expectation of both sides and considering un-
correlated with and yields

(45)

where the Wiener-Hopf equation [13] has been used.
Assuming that the algorithm converges, the last term of (45) can
be neglected, and we should have

and

(46)



418 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 2, FEBRUARY 2000

The inequalities in (46) are satisfied if we use

(47)

where Due to the degeneration scheme,
the expanding subspace theorem [17] is not valid, and we have,
after multiplying (7) at instant by

(48)

where the last term is not zero, due to the use of a nonconstant
Therefore, using

(49)

is less effective than using (47). Still, it is possible to use (49),
but must be set smaller in order to compensate for the presence
of an extra term in (48).
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