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Analysis of Conjugate Gradient Algorithms for
Adaptive Filtering

Pi Sheng Changviember, IEEEand Alan N. Willson, Jr.Fellow, IEEE

Abstract—This paper presents and analyzes two approaches to tion 1ll compares and analyzes two implementations, and Sec-
the implementation of the conjugate gradient (CG) algorithm for  tion IV shows our simulation results.
adaptive filtering where several modifications to the original CG
method are proposed. The convergence rates and misadjustments
for the two approaches are compared. An analysis in the-domain Il. DERIVATION OF THE ALGORITHM

is used in order to find the asymptotic performance, and stability The CG method can be applied to adaptive transversal filters

bounds are established. The behavior of the algorithms in finite . . - L
word-length computation are described, and dynamic range con- as shown in [3], [15]. Doing this, the objective becomes the

siderations are discussed. It is shown that in finite word-length Solving of

computation and close to steady state, the algorithms’ behaviors

are similar to the steepest descent algorithm, where the stalling Rw=Db (1)
phenomenon is observed. Using 16-bit fixed-point number repre-

sentation, our simulations show that the algorithms are numeri- whereR is theNV x V correlation matrix of the input data vector

cally stable. x(n), andb is the cross-correlation vector between the input
Index Terms—Adaptive filtering algorithms, conjugate gradient data and the desired responfe). If R andb are estimated

method. as in [13] for the least-squares (LS) problem, the CG method
offers an alternative way to solve fer instead of inverting the

|. INTRODUCTION matrix R. If they are estimated as in [3], where a sliding data

I N RECENT years, many adaptive filtering algpri_thm_s base(g'lastic gradient-based method. Many adaptive filtering appli-
on the conjugate gradient (CG) method of optimization ha\é%tions require the weight coefficients to be updated at each in-
been reported [3], [4], [7], [9], [11], [15], [16]. In these works,. ning data sample. Although, with previously developed CG
several modifications have been proposed to improve the perfajs o ithms; this can be done at the expense of running several
mance of the CG algorithm for various applications, but usuallye a1ions per sample, we propose modifications here that wil
the analysis of the proposed algorithms has not been shown. g the algorithm to run just one iteration per sample but stil
well known that the CG algorithm has afaster convergence rafginain performance comparable with RLS or LMS-Newton.
than steepest descent [2], [12] and that it also has lower COMRSie of the main difficulties of the RLS and the LMS-Newton
tational complexity when compared with the classic recurs“éﬁ’gorithms is the necessity to estima&s L. If the estimated
least squares (RLS) algorithm [3], but mostly, its analysis cgf1 ses the property of positive definiteness, that will cause
only be found in th_e opt|m|_zat|on and ma_trlx computaﬂ_on “terfhe algorithm to diverge [13]. This does not happen with the CG
ature. Here, we will describe, from the signal processing POIathod since there is no need to compute the inverse dhe

of view, two of the CG algorithm implementations and analyzg, ;e cG algorithm can be described as follows [12], [17] after
their performance in steady state. Some related implementatify rearrangement for improved clarity:

ideas can also be found in [3] and [7]. In addition, their perfof’nitial conditions:

mance under finite word-length effects will be discussed. Due {9y — ¢ o(0 _ b. 0(0) = (0T e(0). p(1) = (0). k = 1
the highly nonlinear nature of the algorithms, a linearized q”a\Pngil)ek < %( ) +0(0) = 8(0)"8(0). (1) = &(0).
tization model as used in the analysis of the LMS [6], NLMS begin_
[8] and RLS [5] algorithms, in general, cannot be applied.

max,

In Section Il, properties of the CG method of optimization v(k) =Rp(k) 2)
will be discussed, and ways to implement the algorithm effi- N N
ciently in the adaptive filtering context will be described. Sec- alk) =p(k = 1)/p(k)" v(¥) 3)
w(k) =w(k — 1) + a(k)p(k) (4)
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was supported by the National Science Foundation under Grant MIP-9632698. o(k) :g(k)Tg(k)
The associate editor coordinating the review of this paper and approving it for
publication was Dr. Hitoshi Kiya. Bk) =p(k)/p(k — 1) (6)
P. S. Chang was with the Integrated Circuits and Systems Laboratory, De- _
partment of Electrical Engineering, University of California, Los Angeles, CA p(k + 1) - g(k) + [3(k)p(k) (7)
90095 USA. He is now with VTEL Corporation, Sunnyvale, CA 94086 USA. k=k+1
A. N. Willson, Jr. is with the Integrated Circuits and Systems Laboratory,
Department of Electrical Engineering, University of California, Los Angeles,
CA 90095-1600 USA. end . . o _
Publisher Item Identifier S 1053-587X(00)00987-9. where a(k) is the step size that minimizes the cost function
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F(w(k)) (see Section lI-A)g3(k) providesR-orthogonality for This expression can be found by substituting (4) into (8) and by
the direction vectop(%), g(k) is the residual vector defined asassuming thaR andb are constant throughout tlig, . itera-

tions, which is applicable for the case of block processing. It has

g(k) =b — Rw(k) = —VF(w(k)) (8) been usedin [15] and [18]. Here, we propose modifications that

with V f denoting the gradient of the functighand denoting allow it to be used in nonblock processing or sample-by-sample
the iteration number. updating. Notice that the iteration numbewill be replaced by

The formulation above has several desirable properties sdfi ime instant since, after the proposed modifications, only
as the following. one iteration will be performed per time instant.

1) R-orthogonality or conjugacy with respect R of the

; A. Considerations About the Cost Functi
vectorsp(k) [2], [12], [17], i.e., onsiderations About the Cost Function

When the CG algorithm is used to solve (1), it is indirectly
p(k)"Rp(i) =0, forall k # i. (9) minimizing a cost function defined as

2) Orthogonality of the gradient (residual) vectors [2], [12]: F(w(n)) = tw(n)"Rw(n) — bTw(n). (18)

T 7) = g = . e. —
g(k)"g(i)=0, fori=0,--- k-1 (10) The wayR andb are estimated will directly influence the per-

3) The so-called expanding subspace theorem [17], whépgmance of the algorithm. There are two ways that we can com-

the residual vectorg(k), k = 0, - - -, kyax, Satisfy puteR andb by using different schemes of data windowing.
1) Finite Sliding Data Window:In this case, only the data
g(k)'p(i)=0, fori<k. (11) samples inside a window of finite lengfif are used. The cor-

relation matrix and the cross-correlation vector are estimated by

4) The finite termination property [2], [14], [17], where 4 time ensemble averages

kma.x S N (12)

is sufficient for the algorithm to minimiz& (w(k)).

5) The descent property, which is given by [10]: : Jmne M
p(k +1)"g(k) > 0. (13) b(n) =+ M;m d(5)x(5)-

To see that the CG algorithm satisfies the descent property,

Y¥fe residual vector is then computed as
post-multiply the transpose of (7) k(&) ldual v i pu

p(k+1)"g(k) = g(k) g(k) + B(k)p(K) g (k) 2 0 (14) g(n) =b(n) — R(n)w(n) (19)
1 - . . . .
and recognize that the second term on the right-hand side is zero, = > d@) — W) x(@)x()]- (20)
due to (11). j=n—M+1

Variations of the algorithm described in (2)~(7) can be four'flhe formulation in (20) is computationally more efficient than

in[2], [12], [14], and [17], where itis shown that one can use 8 g) it 1 js smaller thariV, which is the length of the input data
iterative method to terminate the algorithm, instead of using t Sctorx(n)

fixed kypax iterations,or use different ways to cpmputaqu. 2) Exponentially Decaying Data WindowBy using the
An alternative expression for the computationcols given exponentially decaying data window, the resulting correlation

by function is the same as the one used by the RLS algorithm.
gk —1)7p(k) When used with the CG algorithm, a performance comparable
a(k) = W' (15) to the RLS algorithm can be achieved. The correlation and

cross-correlation functions are given by
This expression is obtained by post-multiplying the transpose of

(5) by p(k), resulting in R(n) = A;R(n — 1) +x(n)x(n)” (21)
g(k)"p(k) = g(k — 1)"p(k) — a(k)p(k) ' Rp(k)  (16) ang

which leads to (15) after using (11). If we further substitute (14)
into (15) and use (11) one more time, we get (3). In the presence
of computational errors, (11) will not lexactlyzero, and using where \; is the forgetting factor. For sample-by-sample pro-
(15) rather than (3) will result in less computational error in thgagsing, a recursive formulation for the residual vector can be

b(n) = Asb(n — 1) + d(n)x(n) (22)

algorithm. _ ~ found by using (4), (8), (21) and (22), resulting in
The existence of only one matrix-vector multiplication in
(2)—(7) is possible due to the use of a recursive formulation for g(n) =b(n) — R(n)w(n)

the residual vector [12], [15] =Asg(n —1) — a(n)R(n)p(n)

g(k) = g(k — 1) — a(k)Rp(k). (17) +x(n)[d(n) — x(n)"w(n - 1)]. (23)
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B. Termination TABLE |
. . MoDIFIED CG ALGORITHM
There are many schemes proposed in the literature to

terminate the CG algorithm. In [12], an iterative scheme was

proposed, based on the norm of the residual and a maximum Set initial conditions:

number of iterations. In [3], the algorithm terminates after ~ W(0) =0, g(0) =b(0), p(1) = g(0), n = 1.
min(N, M) iterations, due to the use of a finite sliding data

window in the computation dR and, consequently, the residual p(n)Tg(n - 1)

vector. Either way, the CG algorithm has to run several itera- a(n) = ") TR(n)p(n) (50)
tions per data update in order to converge. This is not a problem

when block processing is used, but in sample-by-sample w(n) = w(n=1)+a(n)p(n) (51)
updating, the procedure is computationally costly. One way to

employ just one iteration per coefficient and data update is to g(n) = Xsg(n—1) - a(n)R(n)p(n)

use somalegeneratedgcheme. By degeneration, we mean that + x(n)(d(n) - x(n)Tw(n = 1)) (52)
g(n) will not be completely orthogonal to the subspace spanned

by {p(0), p(1),---,p(n)} or, in other wordsg(n)¥ p(i) = 0, (g(n) — g(n — 1))Tg(n)

for ¢ < n, will not hold. Some other examples of degenerated Bn) = gn— )Tg(n 1) (53)
schemes are a) using a constant valuedaand b) using a

nonconstant matriR at each iteration. For the former, it is p(n+1) = g(n)+B(n)pn) (54)

well-known that usingx, as given in (3), minimizes the cost
function F(w(n)) on the linew(n — 1) + ap(n), whereas
F(w(n)) will not be completely minimized using a constant
value fora. By using a nonconstant matrR at each iteration,
the algorithm can be used in a nonblock adaptation scherh®w often the algorithm is reset will influence its performance.
The new update of the residual in this case is given by (23). If using a certain set of direction vectags$n) does not increase
the cost function, then global convergence can be assured since
C. Line Search a true steepest-descent step is taken every time the algorithm is

In the CG algorithmg is the step size used in the update ofeSet: A non-reset method can also be useq, but thg quak-Ri-
the weight vector, as shown in (4). The valuecofs usually Piere method [10], [17], [20] for the computation@f which is
chosen so thaf(w(n — 1) + ap(n)) is minimized. Explicitly 9iven by
computinga for the cost function shown in (18) results in (3). -

This is an exactline search along the direcign). Inexact line _ (g(n) —gln —1))" g(n)

. ; A(n) T (25)
search schemes with reduced complexity can also be used, but gln—1)"g(n—1)
they must satisfy the convergence bound given in the Appendix.

When the exponentially decaying data window is used, we ha ould be used for improved performance. Simulations have
P y ying shown that (25) performs better than (6) when using a degen-

p(n)Tg(n —1) _ erated scheme becausg: — 1)*'g(n) will not be exactly zero.
a(n) = o) TR(n)p(n)’ (Ar =05)=n<Xs. (24) Taple | shows an implementation of the algorithm, taking into
account some of the considerations discussed.

Notice that usingg(n — 1)T'g(n —1) instead ofp(n) ' g(n—1),
as shown in (3), is less effective for the degenerated scheme (SE['ﬁ
. . ANALYSIS OF THE CONJUGATE GRADIENT ALGORITHM
the Appendix).
Another expression fak(n), which preserves orthogonality In the previous section, we presented several approaches to
or the so-calledxpanding subspace theordfiY] by ensuring the implementation of the CG algorithm in adaptive filtering.

thatp(n)?g(n) = 0, is given by Here, we will analyze two of the proposed approaches. The first
one, which we call CG1, assumes a variable autocorrelation ma-

a(n) trix R and cross-correlation vectdr, which are updated for

~ App(n)Tg(n— 1) + p(n)"x(n)[d(n) — x(n)"w(n —1)]  eachinputdata sample, and only one iteration of the algorithm is

B p(n)TR(n)p(n) " performed per time instant. The second approach assumes con-

o _ o . stantR andb within the internal iterations, an&f’ or fewer in-
This is obtained by premultiplying (23) byp(n)” ternal iterations are performed per input data sample, wiNere
and applying (11). Note that thisv(n) also minimizes s the dimension oR. We call this algorithm CG2.

F(w(n — 1) + a(n)p(n)). It has been shown in the quadratic optimization literature that
. . the CG algorithm converges in finite steps for consRrgndb
D. Resetting the Algorithm [2], [12]. This is used in the analysis of the algorithm CG2 and

For sample-by-sample processing, it is important to periodhe algorithm presented in [3]. The advantage of CG2 is that
cally reset the direction vect@(n) to the true gradient in order the convergence rate is independent of the eigenvalue spread of
to ensure the convergence of the algorithm. The degeneraRgwhereas the disadvantage is that, when a finite data window
scheme will not allow the algorithm to converge M steps. is used to estimate the autocorrelation and cross-correlation, the
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output mean-squared error is dependent on the length of the datafter k.. iterations, do:

window. _

In the algorithm CG1, which was previously reported in [7], w(n) =w(kmax)
both finite data windows and exponentially decaying data win- w(0) =w(n)
dows can be used, although the latter gives better performance n=n+1

due to the resulting better estimation Bf andb, as will be

shown in Section V.

A. The Conjugate Gradient Algorithms

goto Start.
Notice thatR(n) is fixed throughout the: iterations, and
only the final vectorw(k.x) is of interest. Heref.x =

Algorithm CG1: The CG algorithm using the first approachmin(, M) since if M < N, there are onlyM distinct di-
is shown in Table I, where it minimizes a cost function definegection vectors [3].

asF(w(n)) = w(n) R(n)w(n)/2—b(n) w(n). R(n)isthe

N x N sample correlation matrix of the input data vectdn)
computed as in (21), and(n) is the N x 1 cross-correlation Sequence.

vector computed as in (22).

In state-space notation, the algorithm CG1 can be written Bs
shown in the first equation at the bottom of the page.
Algorithm CG2: Following the same approach used in![3]

In state-space notation, CG2 can be written as the second
equation at the bottom of the page, whéfe) is the unit-sample

CG Algorithm in Signal-Flow-Graph Representation and
Asymptotic Analysis

Using the state-space representation given previously, we can

and in Section Il, the second CG algorithm can be describedvdew the CG algorithms as nonlinear time-varying digital fil-

follows:
Set initial condition:w(0) = 0.
For each time instant, compute:
Start:
M-1
R(n) = ; x(n — i)x(n — )7
M-1

B(n) = % > din—iyx(n— i)

g(0) =b(n) — R(n)w(0), p(1) = g(0)
for k = 1 to k. do:

(26)

ters. First consider the algorithm CG1, and in order to simplify
its analysis, it is assumed that the input signal is wide-sense sta-
tionary and ergodictz[a(n)] = @, E[3(n)] = B, E[b(n)] = b,

and E[R(n)] = R, where E[x] denotes the expected value
of z, anda(n), B(n), p(n), w(n), g(n),b(n), andR(n) are
assumed to be statistically independent with respect to each
other. With the expectation operator applied to the state vari-
ables, we can view the system as being linear and time invariant.
Furthermore, let us defin® (z) = Z{E[w(n)]|}, G(z) =
Z{E[g(n)]}, andP(z) = Z{E[p(n)]}, where Z{z} is the
z-transform ofz, and note that (52) can also be written as

g(n) = b(n)u(n) — R(n)w(n) (27)

whereu(n) is the unit-step sequence.

Now, we can find the transfer function fa#¥(z) using (51)
and (54) in Table | and (27). The signal-flow-graph representa-
tion of these three equations is shown in Fig. 1, where we have,
after taking the expectation on both sides of these equations and

Bk) = then thez-transform:
8k~ 1)k — 1) .
p(k+1) =g(k) + Bk)p(k) W(z) =W(2)z™! +aP(z) (28)
1The algorithm presented in [3] has a different formulationdok), g(k), “P(2) :/3];(/:*) +G(2) (29)
andp(k + 1), but, computationally, it has the same behavior as the algorithm bz
CG2 described here. G(z) =5 _1 RW(z). (30)

R(n)

w(n) I a(n)l
gn) | = | —x(n)x(n)T MI—an
p(n) 0 I

a(n)f(n — DI
a(n)f(n — 1)R(n)

Bln—1DI
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bm)um)lﬂ? C. Convergence and Misadjustment
win) 5 ro—> (‘ Fﬁrst, considgrthe glgorithm CG1,wherean gxponentially de-
il R(n) "P(“*“ caying data window is used for the computationRofn) and
71 71 A B b(n), _and t_he updated weight-vector is obtained as the result
of a single iteration. The convergence rate will depend on the
w(n-1) Otﬁn) 'P(n) eigenvalue spread. Using varial®») for each iteration re-
o duces substantially the computational complexity of the algo-

rithm. In steady state, &(n) — R, the misadjustment for the
algorithm CG1 will be equal to the misadjustment of the RLS
algorithm since both algorithms minimize a cost function given

Fig. 1. Signal-flow graph representation of the CG algorithm.

Solving forW (z), we get

by
—=h ~2
W(z) = ((z = 1) (z — H)I + aRz) "+ (“b—l) F(w(n)) = tw(n)R(n)w(n) — b(n) w(n)
Z = n
1 T Nt (N (NI
and knowing thaW (z) = W (z), which is the one-sided =3zw(n) z_: Ay x(@)x(i)" win)
transform, we can use thi@al value theorenfil 9], which leads " =0
to - Z )\}“i d())x(i) 'w(n)
lim E[w(n)] = lim (2 - DWT(z) =R 'b.  (31) o ‘ n ‘
=53 N el =3 ) A (i)
The above limit exists ifz — 1) W (z) is stable; therefore, we =0 =0

must havg3| < 1 and the roots of wheree(i) = d(i) — w(n)Tx(i).
) Next, consider Algorithm CG2, where a finite-length data
window is used for the estimation & andb. The convergence
must lie inside the unit circle. Expression (31) shows th&&te does not depend on the eigenvalue spread of the correlation
E[w(n)] will converge tow* for n — oo, wherew* is Matrix because of the way the algorithm is implemented, where
the optimum weight vector. We can apply a unitary trandb€ updated weight vector at each time instais the last up-
formation toR so thatR = QAQ? and, knowing that dated weight vector aftet...... iterations. Therefore, we have,
det(QAQT) = det A, whereA is a diagonal matrix whose considering that the algorithm converges after #hg itera-

elements\; are the eigenvalues &, (32) becomes tions
N-1 B B Ww(n) = R(n)"*b(n). (36)
I[I &+ @\ -@B+1)2+p5) =0. (33)

=0

det((z — 1) (z — B)I +aRz) =0 (32

This means that at each time instantw(n) is the optimum
solution for the giverR(n) andb(n), so that the convergence

Looking at each second-order term of (33) to ensure that thethe algorithm inn will not depend on the convergence of the
roots of the second-order term lie inside the unit circle in th@gorithm in.

z-plane, we must have Now, for the analysis of the misadjustment of Algorithm
_ _ CG2, consider it being used in the system identification
-1 5/_3+a)‘i - E -1 (SI) configuration. The desired response is the output of the
-1<p-a\+p+1 FIR filter with optimum weight coefficients (plant) given by
~1<B<1. d(n) = w*Tx(n) when there is no measurement noise. The

output error of the system is
A sufficient condition for the stability of the system described

by (28)—(30), where the poles of the system are the roots of (33), e(n) =d(n) — w(n)" x(n)
is =(w* — W(n))Tx(n) = e(n)Tx(n)
28+ 2 and the mean-squared error is

0<a< . (34)

)\Ina.x 21 _ T T —
_ Ele(n)7] = E[x(n)” e(n)e(n)” x(n)] = trRK(n)]
For 3 — 0, we have
whereK(n) = E[e(n)e(n)?], ande(n) = w* — w(n) [13].
2 (35) For the Sl configuration with white Gaussian noise as the input
signal,R = ¢2T, and we have

0<ax<
- “ - )\max
which agrees with the results obtained for #teepest descent Ele(n)?] = o2 tr K(n) = o2E[||e(n)|?]. (37)
algorithm [13]. For Algorithm CG2, sincB(n) andb(n) are R )
constant throughout the iterations, the analysis presented irwhen usingR(n) andb(n) to estimateR andb, we have to
[2] and [12] can be readily applied. consider the variance of the estimators. The greater the variance,
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the “noisier” the resulting weight-vector will be. Aftét,... it-  The variance of;;(n) is given by
erations, we have

2 () C var(j;(n)) = E[(75;(n) — ;)]
n)w(n) = b(n). 38
R(n)w(n) = b(n) (38) Bl () + 12, — 27,5 ()]

This is equivalent to saying that the norm of the residual vector 1 M—-1
_ . N4
satisfies =F e { Z x(n—i—j)
- - =0
llg(kmax)l| = [p(n) — R(n)W(kmax)|| < € M—-1 M-1
i iV — b — )2
wheree can be made arbitrarily small [2]. Consider the case + Z kz s(n—i—j)e(n=k=j)
whenR = o1 so that;;(n) = 0, fori # j, wheres;;(n) is ke Mt
an element oR(n). Then, (38) becomes 4 202 ) 9
T x(n—1i—j)
755 (n)w;(n) = b;(n) . =
- . =—[M M(M — 1ot
wherew;(n) andb,;(n) are the elements ok (n) andb(n), M2[ ma + M( )o:]
respectively. Lot 203 E (42)
Now, consider the inequality presented in [12] that shows a ¥ M M

bound for the norm of the weight-error vector
wherem, = E[z(n)*] is the fourth-order central moment [21],

lw* — w(B)l|r, < 2l[w" — w(O)||z, <\/E— 1) (39) considering tha&[z(n)] = 0.

VeE+1 To compute the variance &f(n), we first notice that
where||w||g, = VWIRiw, k= IR ||2|| Rz is the condi- ] Mot
tion number, and®; = R(n) in the context presented here. b(n) = — Z d(n —i)x(n — 1)
UsingR = E[R(n)] = o2I and taking the expectation of M=
both sides of (39), we havB[w (k)] = w* and sincew(n) = N-1
w(kmax), We can conclude tha[w(n)] = w*, which shows din —i) =wTx(n —i) = wiz(n —i — k)
that the weight-vector is convergent in the mean. k=0
The variance of the weight-vectér(n) is given by
so that
var(u; (n)) = E[(w;(n) — Elw;(n)])?] s
:E[((?ZJ —€(n) - *E£ 5 (m)])?] , bi(n) = % Z d(n —)a(n —i— j)
= E[(w] — ¢j(n) — wj)’] = Ele;(n)]. i=0
M-1 N-1

Due to the computation ab;(n) using the CG algorithm, it is _ 1 Z Z wiz(n —i— k)z(n —i—j).
difficult to find the variance ofw;(n) directly from the algo- 0 b—0
rithm because of its iterative nature. Here, we will consider

_ _ . Now, consider

var(i; (n) a var(i;;(n))var(b;(n)) (40)
M-1

which prov_ldes agood apprOX|mat|on for the variancegfin ), 1 Z w(n—i— k)a(n —i—j) ~0, k4§
as shown in our simulations. et

Consider now the notation of the input data vector as

xo(n — 1) z(n —1)
r1(n —1 z(n—i—1
x(n—1) = . : ) = ( : ) . - 1 Ail
: : bi(n) =— wiz(n —i—j)
zn—1(n —1) zn—i—N+1) M o=
« M1
Then, we can write = MJ z(n—i—j)? =wir;(n).  (43)

rij = Elz(n - 5)7] =0
M-1 . . L.
. 1 L Comparing (43) with (42), it is easy to see that
75i(n) =57 > z(n—i-j)? (41)
=0 ~ m4
var(b; *2 44
and (bj(n)) = wi” 57 (44)

2A similar procedure used to determine the variance of an estimator is shown

E[f“(n)] =Tjj- in [21].
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For Gaussian input signals, the kurtosis of the signal,= TABLE I
4 4 _ 4 _ PERFORMANCE FORVARIOUS LENGTHS OF DATA WINDOWING
Eli/ o3, is 3’_ SO we haven,/M = 30;/M, and the mean 02 =0.25 N =3, ||w"||* = 1.3071 wiTH NO MEASUREMENT NOISE, AND
squared error is given by WITH RESULTS AVERAGED OVER 50 INDEPENDENTTRIALS
M | MSE (Simul.) | MSE (Theor.)
Ele(n)*] = o3 Ell|e(n)[|"] 5 | —2553dB 33.38 dB
N-1 N—-1 10 -33.30dB —39.40 dB
=02E | Y ¢(n)?| =02 var(i;(n)) 15 | —39.09 dB —42.92 dB
=0 7=0 20 -43.02 dB —45.42 dB
N_1 25 | —46.04 dB —47.36 dB
~ 2 ﬁ *2 90—;0” *||2
~ 0, M2 = M2 w .
3=0 System identification contiguration. order=20
1 T T T 7 T
This shows the dependence of the misadjustment on the len¢ g},
M, as has been suggested in the simulation results in [: :
Table 1l shows the performance of CG2 for various values ¢ %%}
M. As M increases, the theoretical results converge to the sir o7}
ulation results, showing that (40) is a suitable approximatio \
for the analysis developed here. Further results are shown ,EO'G’.
the next section. Fosh
T J I
D. Finite Word-Length Effects °"‘ﬁ}i
|
Due to the nonlinear nature of the CG algorithm, itis not pos 03 1::L:E
sible to use additive quantization noise to model the quantiz , jl{cﬂ
tion effects, as has been done in [5], [6], and [8]. Quantizing th :L’h b
variables in the CG algorithm will lead some of them to becom 3 :;:! ;" ’ i-l . ' A | .
zero, changing completely the behavior of the algorithm. Thisi ,[_§ie! itk &ita iyt g: TR S LR SRR LT
particularly true for the variables(n) and/3(n). Consider, for 0 100 200 800 400 500 600
example3(n) as in (53), in fixed-point computation. In order _ o _ _
to be able to updatp(n + 1), it is necessary to have Fig. 2. a(n) in fixed-point computation.
System identification configuration. order=20
QB(n)] > 0 2 : " : : "
18
or

- 1
Q |@llgtr) ~ s(n ~ 1) 80IQ | ey 1)1” !

2 2_];_1 AT.Z-::
5 ) 1
which implies that we should have "08 y
8 A
"
T -B-1 o6l
Ql(g(n) —gln —1)) g(n)] = 2 i |
o« } |
or i b |
i Y ]
>~ Qllgi(n) = gi(n = 1)gi(n)] > 27 N I VLS i
0 100 200 300 400 500 600

n

where B is the number of bits used to represent the fractional
part of a number in fixed-point notation [6], [8], ad@l-] is the Fig. 3. A(n) in fixed-point computation.
quantization operation. This implies that each elemegf{af),

given byg;(n), must satisfy 1) will not be updated by the additional term. The algorithm,

under these circumstances, will behave like the steepest descent
algorithm, wherep(n + 1) will be equal to the residual vector
g(n). Figs. 2 and 3 show the values aofn) and 3(n) for a
which means that only half of the dynamic rangeggfn) is  single run of CG1 in fixed-point arithmetic with; = 0.99,

used in the computation ¢f(n). Usually, when the algorithm n = 0.9, N = 20, o2 = 0.1, and SNR= 30 dB, using 10
converges, the residual vectgfn) will be close to zero. Due bits for the fractional part and six bits for the integer part of the
to quantization, the new value 6{n) will be zero, andb(n + number representation.

g7(n) Z 2(—B—1)/2
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TABLE I TABLE IV
CG ALGORITHM USING DIFFERENT IMPLEMENTATIONS OF 3 AND RESET PERFORMANCE FORDIFFERENT IMPLEMENTATIONS OF 0 AND VALUES OFN.
SCHEMES Ay = 0.99, SNR=30dB,c% =1 SNR=20dB,A; = 0.99
MSE MSE
CG algorithm with: n=208 n = 0.99 using oy, as in: | equation (47) | equation (49)
reset after N iterations | 1.1278 x 10‘:’ 1.1290 x 103 7 =006 11213 x 102 | 1.1210 x 10-2
non-reset 7.3268 x ].0—Z 72802 X 10_2 n= 0.8 1.1221 x 10—2 1.1225 X 10—2
non-reset Polak-Ribiere | 1.1221 x 1073 1,12266 x 107° 7 =000 11227 %< 10-2 instable
RLS 1.1216 x 10 RLS [13] 1.1216 x 102
E. Dynamic Range
TABLE V

As previously observed, for the computation/fr), only  TESTING THE CONVERGENCECRITERION FORDIFFERENTVALUES OF A ;. THE
half of the dvnamic ranae is effectively used. This also hap-ALGORITHM BECOMESUNSTABLE FORVALUES OF N GREATER THAN OR
. y ' . 9 . y . P EQUAL TO THE ONES SHOWN. SNR=10dB,c2 =1
pens with the fixed-point computation ofn) due to the inner

product appearing in its numerator. Whetw) is zero due to %; | 7, equation (47) | 7, equation (49)
guantization, the algorithm stops updating the weight-vector. 0.99 2.0 1.0
This is known as thstalling phenomenof6], [8]. 0.9 2.0 0.99
Now, consider the computation 8(»). Rewriting (21), we 0.8 1.8 0.87
can see that 0.7 1.53 0.77
n
R(TL) = Z )\}X(TL — L)X(TL — i)T . System identification configuration. Order=20
. 10 T T v T T T T T
i=0 ——— NLMS (1)
.- NLMS (0.
and e ©.1)
__RLS
g 1 cG
— T —
E[R(c0)] = 2% MR = i \ ]
2= 1 SR
'll 9 I\-
} ~N N
For values of\; close to oneE[R(n)] is large, and extra bits § 1: WTRE W L 5,
would be required to correctly compuR(n) without satura- it it ,\,\,‘n";"l;‘,‘j‘;‘;";gk';\;gjq’,I‘i«u‘_afﬁﬁ!:ﬁ;if
tion. A normalized version given by ik ‘ } ‘ K
107
R(n) =A/R(n — 1) + (1 — Ap)x(n)x(n)*
b(n) =Asb(n —1) + (1 — As)d(n)x(n)
is preferred in this case, and the new residual vector will becon 1075 s - : -

. L L 1 L
20 40 60 80 100 120 140 160 180 200
n

g(n) =Arg(n — 1) — a(n)R(n)p(n)

- Fig. 4. Simulations using S| configuration.= A, = 0.99, SNR= 20 dB.
+ (L= Ap)x(n)(d(n) —x(n)" w(n — 1)).

(LP). All simulations were ensemble averaged over 100 inde-
C%_?ndent trials.

First, we simulated several implementations discussed in Sec-
tion I, where we considered an Sl configuration with the un-
known plant being an FIR filter of order 20 and the variance of
the white Gaussian input signa} = 1. Table 1ll compares the
performance for different reset schemes. It is shown that using

a non-reset scheme the algorithm performs badly due to the loss

While this normalization might be useful in floating-point com. orthogonality betweer;, andpy.. Table IV compares the

putation by limiting the dynamic range, it is not very effeCt'vegerformance for different implementations efand values of

under fixed-point computation due to the quantization effect e ~ showing that when orthogonality is not attained, such as in

plaineq previously. When the algori'_[hm Is c_Iose to convergen{he degenerated scheme, the formulation @f (47), given in
A(n) will be small and, when quantized, will become zero. the Appendix, is preferable to that of (49). Table V shows the
validity of the convergence criterion given in the Appendix. It
can be seen that this simple criterion is sufficient to guarantee
Several simulations were performed using the two basic cahe stability of the algorithm. Fig. 4 compares the performance
figurations [13]: system identification (SI) and linear predictionf the RLS, the CG and the normalized LMS algorithms, where

It has been shown in the literature that the vegior) can
also be normalized, resulting in the so-called normalized
algorithm [14], where we have

g(n) + B(n)p(n)

PO+ 1) = = )

IV. SIMULATIONS
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TABLE VI windowing were considered: the finite sliding window and the

PERFORMANGE FORDIFFERENTWINDOWING ScrEmEs SNR=20dB.  exponentially decaying window. With the first, the convergence

7= = rate is fast, but misadjustment is high. By using an exponen-

N MSE tially decaying window, it is possible to simultaneously attain

2 1.6455 x 10~ a fast convergence rate and low misadjustment. A convergence

5 7.6890 x 10~* criterion has been given, which provides a sufficient condition

10 2.2636 x 10~° that guarantees the stability of the algorithm.

15 1.5678 x 107~ Two approaches to the implementation of the conjugate

20 1.3744 x 1077 gradient algorithm have been analyzed, and their convergence

7 350'99 1(2)13;, z 18_2 rate and misadjustment were compared:-domain approach

was used to find the asymptotic performance, and stability
bounds fora and 5 were established. Finally, the behavior

1o . _ Linear prediction configuration. Order-2 . of the algorithms in finite word-length computation were
___NLMS (1) described, and dynamic range considerations were discussed.
. NLMS (0.01) It has been shown that close to steady state, the algorithms’
o —ALS behaviors are similar to the steepest descent algorithm, where
wH T ) R — ca 5 the stalling phenomenon has also been observed. Using 16-bit
! '\'\'\-’\—.\_” . fixed-point number representation, the simulations have shown
i TN e that the algorithms are numerically stable.

Total MSE

APPENDIX

For the CG algorithm, a descent property given by

Lol
Craah il oA ST oAb A 8
vy Ay \i\,_"'/“ﬁ\_l‘-\".’ ‘_v\l\\l_'r. N "I EATNAVIVASRACTAV "\/ v 2 J\}u AR =
AN V /

0 < p(n)'g(n) <0.5p(n)" g(n—1)

. . ' . . . . should hold in order to guarantee convergence [1]. Alooser con-
o 20 40 e s 100 120 140 160 180 200 dition can be set if the following is used:
n

Fig. 5. Simulations using LP configuration.= X; = 0.99, SNR= 30 dB. 0 < Elp(n)Tg(n)] < 0.5E[p(n)g(n —1)].

pnxoms = 1and 0.1. These step sizes give the fastest convBremultiplying (23) byp(n)* gives

gence rate and give misadjustment comparable with the RLS T

algorithm in steady state, respectively. Table VI compares th&(?)” &(n) =A;p(n)" g(n — 1)

MSE due to the use of various data windowing schemes. In —a(n)p(n)TR(n)p(n) + p(n) ' x(n) d(n)
the case shown, using the exponentially de_caying d_at_a window — p(n)Tx(n)x(n)Tw(n — 1).

gives a better performance result than using the finite-length

data window. Here, the plant used is a fifth-order FIR filter W|t|Tak|ng the expectation of both sides and Considep'(@) un-

an eigenvalue spread of 46. correlated withk(n), d(n), andw(n — 1) yields
Finally, simulations were performed using the LP configu-
ration. Fig. 5 shows the simulation results, wherer s = Elp(n)Tg(n)] =~ AsEp(n) gln —1)]

1 and 0.01, withp = Ay = 0.99 and SNR= 30 dB. The
second-order AR model used has an eigenvalue spread of 100. T .
Again, unrms = 1 gives the fastest convergence rate, whereas —p(n)" RE[w(n —1) —w*] (45)

uwnovs = 0.01 gives comparable misadjustment to that of the ] ) .
RLS algorithm in steady state. where the Wiener-Hopf equatidw™ = b [13] has been used.

Assuming that the algorithm converges, the last term of (45) can

V. CONCLUSION be neglected, and we should have

Several modifications to the conjugate gradient algorithm Elp(n)Tg(n)] — AsElp(n)tg(n — 1)]
for adaptive filtering have been described. The algorithms can [a(n)] = Elp(n)TR(n)p(n)]
have the same performance as some high-convergence-rate
algorithms such as the RLS and LMS-Newton, with the aénd
vantage that there is no need to perform matrix inversion or to

estimateR . It has been shown that there are several ways to (Af — 0.5) Elp(n)"g(n—1)] < Ela(n)]
implement the algorithm, leading to different results. Several Elp(n)"R(n)p(n)] ~

simulations were carried out to illustrate the performance \ Elp(n)Tg(n —1)] 46
for different implementation choices. Two methods of data = EPp®)TRn)pHr)] (46)
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The inequalities in (46) are satisfied if we use [16] K. S. Joo and T. Bose, “A fast conjugate gradient algorithm for 2-D
nonlinear adaptive filtering,” ifProc. Int. Conf. Digital Signal Process.
p(n Tg(n _ 1) Limassol, Cyprus, Jung 1995, pp. 314—3_19. _
a(n) =p 7 (47) [17] D. G. Lu_enberger, Llnear and Nonlinear Programming 2nd
p(n)TR(n)p(n) ed. Reading, MA: Addison-Wesley, 1984.

where(A; — 0.5) < 1 < Ay. Due to the degeneration scheme,

[18] R.J. Plemmons, “FFT-based RLS in signal processingProc. IEEE
Int. Conf. Acoust., Speech, Signal Procesel. 3, Minneapolis, MN,
Apr. 1993, pp. 571-574.

the expanding subspace theorem [17] is not valid, and we hav@g] J. G. Proakis and D. G. Manolakistroduction to Digital Signal Pro-
after multiplying (7) at instanfr — 1) by g(n — 1) cessing New York: Macmillan, 1988.

[20] D. F. Shanno, “Conjugate gradient methods with inexact searches,”
T = T 1 Math. Oper. Resvol. 3, pp. 244—_2_56, Aug. 1978. _
p(n)" g(n ) =g(n ) g(n ) [21] H. Stark and J. W. Wood®robability, Random Processes, and Estima-
+ /3(71 _ 1)p(n _ 1)Tg(n _ 1) (48) tion Theory for Engineers Englewood Cliffs, NJ: Prentice-Hall, 1986.

where the last term is not zero, due to the use of a nonconstant

R. Therefore, using

is less effective than using (47). Still, it is possible to use (4¢
butn must be set smaller in order to compensate for the presel
of an extra term in (48).
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