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Abstract- CPM signals find widespread use in wireless
communication systems due to their constant modulus
property and spectral efficiency. Frequency discrimina-
tion based CPM demodulation approaches require effi-
cient instantaneous frequency tracking. Prior attempts at
frequency tracking via adaptive linear prediction have
invoked the use of the fixed step-size LMS algorithm. In
this paper, we present an efficient algorithm that combines
aspects of adaptive linear prediction, frequency tracking
and frequency transformations based on multirate opera-
tions for CPM demodulation using both the adaptive step-
size LMS and adaptive forgetting factor RLS algorithms.
Simulation results indicate that these algorithms offer a
significant reduction in the associated demodulation errors
over the conventional LMS/RLS algorithms.

I. INTRODUCTION

Continuous phase modulation (CPM) belongs to a class of
non linearly modulated signals with constant envelope, where
the information is carried in the phase of the transmitted signal.
High spectral efficiency and suitability to non linear class C
amplifiers used in mobile radio applications make CPM a
popular modulation choice. A specific form of CPM namely
Gaussian minimum shift keying (GMSK) has been adopted
in the Global System for Mobile communications (GSM) [3],
[2]. The optimum receiver structure for CPM demodulation
employs the Maximum Likelihood (ML) detector based on
the Viterbi algorithm [1]. This receiver structure, however has
significant computational complexity which grows exponen-
tially with increase in the number of phase states. A simpler
suboptimal detector based on differential frequency estimation,
decision feedback and correlation operations was proposed
in [4]. In recent work [7], CPM signals and associated digital
modulation schemes were cast into the framework of AM-FM
signal models and a suboptimal approach that uses energy
demodulation methods was proposed. Further work into the
demodulation of large frequency deviation FM signals or
wideband FM signals was recently explored in [8], where
frequency transformations derived from multirate operations
and heterodyning were shown to produce significant reduction
in the associated frequency demodulation errors.

Prior attempts at adaptive linear prediction based instanta-
neous frequency tracking have typically relied on the conven-

tional LMS algorithm for tracking the instantaneous frequency
(IF) of digital signals with narrow-band, rapidly time varying
spectrum [9]. Efforts to directly track the frequency of a sinu-
soidal signal via the LMS algorithm have also been recently
pursued in [10]. For the IF tracking application, specifically,
the choice of the step size parameter is critical, and in turn
depends on the rate of variation of the statistics of the input
signal and the ambient channel noise both of which could
exhibit significant variations in a dynamic SNR environment.

In this paper, we combine aspects of adaptive linear predic-
tion based IF tracking and wideband to narrowband frequency
transformations [8] to develop a novel approach for CPM de-
modulation. Specifically, we apply the adaptive step-size based
LMS (AS-LMS) algorithm and the adaptive forgetting factor
based RLS (AF-RLS) algorithm [11], [6] that adapt the step
size and memory parameters to enable more efficient tracking
of the IF. Simulation results will show that this approach is
more suited for IF tracking in a dynamic SNR environment and
can provide significant reduction in the demodulation errors
in comparison with the standard LMS and RLS algorithms
towards the CPM demodulation problem.

II. CPM SIGNAL MODEL

In general a CPM signal at time t can be expressed as

y(t) = A cos
(∫ t

−∞
ωi(τ)dτ + θo

)
.

where A is the amplitude of the transmitted signal and ωi(τ)
and θo are the IF and unknown phase offset of the signal.
ωi(τ) can further be represented as

ωi(t) = ωc + 2πh
∞∑

k=−∞
a[k]p(t− kTb),

where ωc is the carrier frequency, h is the modulation index,
a[k] ∈ {+1,−1} is the binary modulated data, p(t) is some
frequency shaping function and Tb is the signaling interval.

The phase deviation from the carrier phase is given by:

φdev(t;a) = 2πh
∞∑

k=−∞
a[k]q(t− kTb),

where q(t) =
∫ t

0
p(τ)dτ corresponds to the phase pulse shap-

ing function that describes how the underlying phase change

2020-7803-8104-1/03/$17.00 ©2003 IEEE



2πha[k] evolves with time, the modulation index determines
the rate of change of frequency in the signalling interval.
Memory is introduced into the CPM signal by the virtue
of the continuity of the phase, additional memory into the
modulation scheme can be introduced by adopting frequency
pulse of length L, larger than a symbol interval (LREC-
CPM), i.e. partial response signalling. In this paper, we will
focus our attention on the case with L = 1, i.e., (1REC-
CPM), i.e. the full response signalling. It is however noted
that all the CPM schemes are partial response when viewed
as phase modulated signal because of the infinite duration of
the phase pulse. Specifically CPM with a rectangular pulse of
one symbol duration (1-REC-CPM) is equivalent to continuous
phase frequency shift keying (CPFSK). MSK is equivalent to
1-REC-CPM with a modulation index of h = 0.5, while
GMSK can also be put into the CPM framework with a
Gaussian frequency pulse shaping function [1]. In this paper
CPM signals with a modulation index h > 1 will be classified
under large deviations CPM signal.

III. ADAPTIVE LINEAR PREDICTIVE IF TRACKING

The optimal values of the coefficients in a linear predictor
{gi}Lp

i=1 are obtained via the Wiener-Hopf equations [6]:

Gopt = R−1
xx P x,

where Rxx is the data correlation matrix, P x is the cross-
correlation vector and Gopt is the optimal weight vector. The
prediction error filter corresponding to this optimal predictor
is given by:

E(z) = 1−
Lp∑

i=1

giz
−i

The IF of the signal of interest is then estimated by first
computing the coefficients of the instantaneous prediction error
filter, rooting the instantaneous prediction error polynomial
and then computing the argument of the complex conjugate
pole locations as described in [9], where the standard LMS
algorithm was used to update the predictor coefficients.

One of the goals in this paper is to incorporate the use of
the AS-LMS and the AF-RLS algorithms into this adaptive
linear prediction framework because they are more suited
for a dynamic SNR environment and the IF tracking/CPM
demodulation application than the conventional LMS/RLS
algorithms. The AS-LMS algorithm for the adaptive linear
predictor coefficients is summarized via [6]:

Gn+1 = Gn + µnx(n)f∗L(n)

fL(n) = x(n)−
L∑

i=1

gn,ix(n− i)

µn+1 =
[
µn + α<[ΨH(n)x(n)f∗L(n)]

]µ+

µ−

Ψ(n + 1) =
[
I − µnx(n)xH(n)

]
Ψ(n) + x(n)f∗L(n),

where < denotes the real part, α > 0 is a small number
representing the learning rate of the step size adaptation,

ΨH(n) denotes the gradient of the weight vector with respect
to the step size,

Ψ(n) =
∂Gn

∂µ
|µ=µn

and the notation µ ∈ [µ−, µ+] denotes truncation of the
step size to this interval, properly chosen in order to prevent
divergence. It is shown in [11] that µ− plays a relatively
insensitive role in the convergence of the step size, whereas
µ+, the upper level of truncation is highly crucial for good
convergence behavior.

In a similar vein, the standard RLS algorithm can be
generalized to incorporate adaptive memory via the AF-RLS
algorithm: [6]:

k(n) =
λ−1

n−1P (n− 1)x(n)
1 + λ−1

n−1x
H(n)P (n− 1)x(n)

fL(n) = x(n)−
L∑

i=1

gn,ix(n− i)

Gn = Gn−1 + k(n)f∗L(n)
P (n) = λ−1

n−1P (n− 1)− λ−1
n−1k(n)xH(n)P (n− 1)

λn =
[
λn−1 + α<[ΨH(n− 1)x(n)f∗L(n)]

]λ+

λ−

S(n) = λ−1
n

[
I − k(n)xH(n)

]
S(n− 1) [I − x(n)k(n)]

+ λ−1
n k(n)kH(n)− λ−1

n P (n)
Ψ(n) =

[
I − k(n)xH(n)

]
Ψ(n− 1) + S(n)x(n)f∗L(n),

where S(n) denotes the gradient of the inverse matrix P (n)
with respect to λ:

S(n) =
∂P (n)

∂λ
,

Ψ(n) denotes the gradient of the weight vector with respect
to λ:

Ψ(n) =
∂G

∂λ
|λ=λn

and α is the learning rate associated with the forgetting factor
update. Similar to the AS-LMS approach, we truncate the
forgetting factor to the interval λ ∈ [λ−, λ+]. As noted
in [11], the lower limit of the truncation λ− plays a more
important role and the value has to be determined through ex-
perimentation. For small modulation indices, the CPM signal
is narrowband and the IF’s are slowly time-varying signals that
can be smoothed using simple median and binomial filtering
to remove spikes and noise.

IV. WIDEBAND TO NARROWBAND CONVERSION

The adaptive linear prediction based IF tracking approaches
described in the previous sections are based on the assumption
that the signal of interest has narrowband spectral content.
For the demodulation of large deviation CPM signals, these
approaches will incur more error and this will result in a
loss of tracking. Towards improving the tracking capabilities
of these algorithms in wideband environments we employ
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Fig. 1. CPM demodulation in AWGN with the AS-LMS algorithm: (a) normalized IF estimates derived from the linear predictive IF tracking in 1-REC
CPM with the AS-LMS algorithm. (b) step size trajectory for 1-REC CPM, (c) performance comparison of CPM demodulation with fixed step size LMS to
that of adaptive step size LMS.
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Fig. 2. CPM demodulation in AWGN with the AF-RLS algorithm: (a) normalized IF estimates derived from the linear predictive IF tracking for 1-REC
CPM with the AF-RLS algorithm, (b) forgetting factor trajectory for 1-REC CPM, note that SNR is changed at iteration 3000, (c) performance comparison
of fixed forgetting factor RLS to adaptive forgetting factor RLS.
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Fig. 3. CPM demodulation in AWGN for large frequency deviations: (a) IF estimates for 1-REC-CPM without frequency transformations, (b) IF estimates
for 1-REC CPM after frequency transformations, (c) effect of including frequency transformations on the average symbol error probability.
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Fig. 4. Two Component CPFSK: (a) Composite CPFSK signal over 10-bit intervals, (b) normalized IF estimates derived from the AS-LMS algorithm,
predictor order Lp=4, the estimates can further be smoothed using median smoothing filters, (c) corresponding normalized IF estimates derived from the
AF-RLS algorithm, with a predictor order of Lp=4.

frequency transformations derived from multirate operations
such as interpolation and decimation and heterodyning as
described in [8]. Frequency compression by a factor R serves
the purpose of reducing the frequency deviation and the
message bandwidth of the original signal by a factor of R
and compressing the IF while still retaining the continuous
phase of the signal. Frequency upshifting or heterodyning by a
factor ωd serves the purpose of increasing the carrier frequency
of the interpolated signal by ωd so that the parameters of
the signal are transformed to regimes where the conven-
tional monocomponent demodulation algorithms perform well.
Specifically the frequency compression/expansion operations
are implemented in discrete–time via the multirate opera-
tions of interpolation and decimation. The decimation and
interpolation operations are further implemented efficiently
using a polyphase decomposition for the filters [5], [8]. These
wideband to narrowband conversion operations in conjunction
with the regular demodulation algorithm were shown to pro-
vide efficient noise shaping and a significant reduction of the
normalized frequency demodulation errors [8].

V. CPM DEMODULATION VIA ADAPTIVE FREQUENCY

TRACKING

The optimal demodulation approach for CPM signals is
of-course the maximum likelihood approach as embodied in
the Viterbi algorithm [2], but the computational complexity
of this method in terms of the number of phase states is
pML−1, where M is the alphabet size of a[k] and L is the
length of the frequency pulse. Our goal here is to demonstrate
via simulations that the CPM demodulation scheme described
before employing adaptive linear prediction based IF tracking
combined with wideband to narrowband frequency transfor-
mations provides, albeit suboptimal, a computationally simpler
approach to the CPM demodulation problem.

Consider the example in Fig. (1) where we apply the AS-
LMS algorithm to the CPM demodulation problem. Fig. (1) (a)
describes the normalized IF estimates of the AS-LMS algo-
rithm indicating that the algorithm is able to track the IF of the

input signal. Fig. (1) (b) describes the adaptation of the step
size. Specifically it can be seen that with larger SNR the step
size takes on a larger value allowing for faster convergence,
whereas with lower SNR the step size assumes a lesser value.
This automatic updating of the step size parameters removes
the uncertainty involved with the selection of the optimum
value of the parameter. As a figure of merit we choose the
average symbol error probability (SEP) in the problem of
CPM demodulation since for this application, our interest
is in the capability to detect the correct bits. The detector
used subtracts the carrier frequency estimate from the IF
estimate and performs matched filtering with sign detection
on the carrier unbiased IF estimate. We compare the average
probability of symbol error averaged over 100 experiments
obtained via the use of the AS-LMS with that of the detection
error for binary antipodal modulation in AWGN as given by
[1]:

Pr(ε) = Q

(√
2Eb

No

)
,

where Q(.) is the standard normal tail probability1, Eb is the
energy per bit of the input signal and No is the noise spectral
density. In Fig. (1) (c) we compare the SEP obtained from the
fixed step size LMS based IF tracking algorithm to the AS-
LMS algorithm. We observe a performance gain in the AS-
LMS case, that is solely due to the better IF-tracking capability
in a dynamic SNR environment that is afforded by the step
size adaptation.

Consider the example in Fig. (2) where the AF-RLS algo-
rithm has been applied to the CPM demodulation task. The IF
estimates of the AF-RLS algorithm are described in Fig. (2) (a)
and are descriptive of the superior IF tracking achieved by the
AF-RLS algorithm and a significant improvement in the per-
formance of AF-RLS over the AS-LMS algorithm. Fig. (2) (b)
describes the trajectory of the forgetting factor for different

1This performance metric is used in an effort to study the efficiency of the
demodulator in inverting the CPM modulation
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SNR’s. Note that the forgetting factor takes lesser value with
larger SNR, i.e., the data in the distant past is weighted less
to enable efficient tracking. In the presence of larger noise the
forgetting factor increases and the past data more is weighted
more since present data is noisy. In Fig. (2) (c) we evaluate
the performance CPM demodulation with AF-RLS for 1-REC
and 1-RAC CPM. Note that there is a significant performance
gain while using the AF-RLS in comparison to the fixed
memory RLS. Simulation results also indicate that after a
SNR of 6-8 dB the algorithm completely inverts the effect of
CPM modulation and there are no errors in the demodulation
process.

Consider the example in Fig. 3 that illustrates the benefits
of wideband to narrow frequency transformations, where the
modulation index of the signal is h = 3.0. The IF estimates of
the AF-RLS algorithm are described in Fig. (3) (a). The actual
normalized IF occupies most of the entire interval ω ∈ [0, 1],
indicating significant wideband content. Note that there is
a significant loss of tracking that can be attributed to the
large frequency deviation of this signal. The corresponding IF
estimate of the AF-RLS algorithm using an rate change factor
of R = 4 and ωd = 1.309/π is described in Fig. (3) (b), where
the frequency transformations have enabled the better tracking
of the IF of the large deviation CPM signal. Fig. (3) (c) de-
scribes the dramatic effect that these frequency transformations
have on the average SEP for a rate change factor of R = 2.

Consider a two-component CPM signal environment in
Fig. (4), where the components are both 1-REC-CPM signals
with modulation indices h1 = h2 = 0.715, Tb = 1 ms and fs =
10 kHz, normalized carrier separation (NCS) parameter (car-
rier separation normalized by the average Carson bandwidth of
the components) of 1.46 and a relative power ratio (MPR) of 0
dB. With this parameter setting, there is a significant amount
of spectral overlap. Fig. (4) (a) depicts the composite CPFSK
signal over 15 symbol periods. Fig. (4) (b) describes the IF
estimates derived from the AS-LMS algorithm. Fig. (4) (c)
depicts the IF estimates derived from the AF-RLS algorithm.
It is observed that the AF-RLS is better in tracking and
separating out the IF components in the composite CPFSK
signal than the AS-LMS algorithm partly due to the relatively
increased sensitivity of the LMS algorithm to the conditioning
of the input correlation matrix which further deteriorates as the
spectral overlap between the components increases [12] and
partly due to the absence of gradient related noise problems
that plague the LMS.

Another useful observation is the fact that the symbols
are from a zero-mean constellation and the mean of the IF
estimate:

ω̂c =
1
P

P−1∑
n=0

ω̂i[n].

can serve as an estimate of the carrier frequency of the signal.
This is useful in carrier frequency recovery applications and in
scenarios where a simple Doppler shift present in the received
signal will manifest itself as a non zero mean in the IF
estimates of these algorithms that is eventually subtracted from

the IF estimate during the detection process.

VI. CONCLUSIONS

In this paper, we have presented an efficient CPM demod-
ulation approach that combines adaptive linear predictive IF
tracking implemented in the form of the adaptive step size
and adaptive forgetting factor LMS and RLS algorithms along
with frequency transformations derived from multirate and
heterodyne operations. The frequency transformations convert
the wideband CPM signal into a narrowband version making
it more amenable to IF tracking based demodulation. The
adaptive step size and memory aspects allow for efficient
tracking of the IF in a non stationary or a dynamic SNR
environment making them more suitable for the CPM demod-
ulation problem. Simulation results have shown that there is a
significant reduction in the demodulation error in comparison
to the fixed step-size/forgetting factor LMS/RLS algorithms.
These algorithms are also robust to the presence of Doppler
shifts in the received signals.

REFERENCES

[1] J. G. Proakis, “Digital Communications,” Fourth edition, McGraw-Hill
Companies, Inc., New York, 2001

[2] J. B. Anderson, T. Aulin and C-E. W. Sundberg, “Digital Phase Modu-
lation,” Plenum, New York, 1986.

[3] C-E. W. Sundberg, “Continuous Phase Modulations,” IEEE Communi-
cations Magazine, Vol. 24, pp. 25-38, April 1986.

[4] S. Bellini and G. Tartara, “Efficient Discriminator Detection of Partial-
Response Continuous Phase Modulation,” IEEE Transactions on Com-
munications, Vol. 33, No. 8, pp. 883-886, Aug. 1985.

[5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discrete–Time Signal
Processing,” Prentice Hall Inc., Upper Saddle River, New Jersey, Second
Edition, 1999.

[6] Simon Haykin, “Adaptive Filter Theory,” Fourth Edition, Prentice Hall
Inc, Upper Saddle River, New Jersey, 2002.

[7] B. Santhanam and M. Gupta, “Energy Separation and Demodulation of
CPM Signals,” Proc. IEEE DSP Workshop, Pine Mountains, Georgia,
Oct. 2002.

[8] B. Santhanam, “Energy Demodulation for Large Frequency Deviations
and Wideband Signals,” To Appear, IEEE Signal Processing Letters.

[9] L. J. Griffiths, “Rapid Measurement of Digital Instantaneous Frequency,”
IEEE Transactions on ASSP, vol. 23, pp. 207-222, April 1975.

[10] H. C. So, “Adaptive Algorithm for Direct Estimation of Sinusoidal
Frequency,” Electronics Letters, Vol. 36, No. 8, April 2000.

[11] H. J. Kushner and J. Yang, “Analysis of Adaptive Step-Size SA
Algorithms for Parameter Tracking,” IEEE Transactions on Automatic
Control, vol. 40, No. 8 pp. 1403-1410, August. 1995.

[12] H. B. Lee, “Eigenvalues and Eigenvectors of Covariance Matrices for
Signals Closely Spaced in Frequency,” IEEE Transactions on Signal
Processing, Vol. 40, pp. 2518-2535, Oct. 1992.

206


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



