
Prior ICA Based Blind Multiuser Detection in
DS-CDMA Systems

Malay Gupta, Balu Santhanam
Department of Electrical and Computer Engineering

University of New Mexico
Albuquerque, New Mexico 87131

Email: malay@ece.unm.edu

Abstract- ICA based blind source separation methods
suffer from inherent scaling and permutation ambiguities
which would cause problems in a DS-CDMA multiuser
detection and MAI mitigation scenario. Recently ICA
methods incorporating prior information about the desired
user’s code were proposed as an add-on to the subspace
MMSE detector. In this paper, we propose an Q-R decom-
position based technique to initialize the ICA algorithm in
order to remove the permutation ambiguity as well as to
avoid the explicit subspace computations. It is shown via
simulations that the proposed technique is more robust in
the case of highly correlated unequal energy users.

I. INTRODUCTION

Multiple access interference (MAI) constitutes a significant
bottleneck in achieving the envisaged capacity of a direct
sequence-code division multiple access (DS-CDMA) system.
Inadequacy of the conventional detector to deal with MAI has
motivated the development of optimum multiuser detector [1]
and its suboptimal counterparts [2], [3], [4]. These detectors
either require complete knowledge of the MAI [2], training
data [3] or involve long decoding delays [4]. To overcome
these limitations, a class of spectrally efficient blind detectors
was proposed. Most of the blind detection techniques in
wireless communication literature [5], [6], [7], [8], [9] are
however, based on subspace computations that are computa-
tionally demanding and may not work well in highly loaded
CDMA systems. It is also to be noted that most of the blind
detection techniques listed above utilize only the second order
statistics (SOS) of the received data.

Independent component analysis (ICA) is a blind source
separation (BSS) technique [10] that involves the computation
of higher order statistics (HOS). ICA based techniques assume
non-Gaussianity and independence of the sources. These as-
sumptions are vital for ICA algorithms to work. Fortunately,
these conditions are generally met in a typical communications
system. It is the non-Gaussianity and source independence
assumption that facilitates the use of HOS in ICA based
techniques over SOS based techniques. However, permutation
and scaling ambiguity [11] associated with the ICA algorithms
require special attention in a communications system setting.

Efforts towards eliminating the indeterminacy problems
have recently been reported in [12], where this indeterminacy

is eliminated on the basis of prior knowledge about the source
kurtosis. In our recent work [13], we proposed a code con-
strained ICA (CC-ICA) algorithm based on subspace concepts
for multiuser detection problem. Prior information about the
desired user’s signature code was utilized to constrain the
progress of the ICA algorithm in order to remove the inherent
permutation ambiguity. Recently a multiuser detector based
on the ICA approach was introduced in [14], however due
to permutation ambiguity problem the ICA part has been
incorporated as an add on to the subspace based quasi-blind
minimum mean square error (MMSE) detector. In this paper,
we present an algorithm based on the orthogonal-triangular
(Q-R) decomposition of the observations to avoid explicit
subspace computations following the recently proposed prior
ICA (Pr-ICA) approach in [15]. The resulting algorithm is
very useful in a multiuser CDMA environment where prior
information about the desired user’s code is generally available
with the receiver.

II. SYSTEM MODEL

A CDMA channel is characterized by the fact that there
is no separation between the users either in the frequency
domain or in the time domain. The composite received signal
in continuous time domain can be represented as

y(t) =
K∑

k=1

+∞∑
i=−∞

Akbk(i)sk(t − iTs − τk) + σn(t), (1)

where Ts is the symbol time interval, sk(t) is the deterministic
signature waveform assigned to the kthuser in the channel, Ak

is the amplitude of the kthuser’s signal, bk(i) is the ithdata
symbol transmitted by the kthuser, n(t) is additive white
Gaussian noise (AWGN) with unit power spectral density, σ2

is the noise power spectral density, τk is the channel delay
for the kth user. In the above system model it is assumed
that the data symbols are independent, identically distributed
(i.i.d.) random variables. The signature waveform assumes the
following form

sk(t) =
N−1∑
n=0

ck(n)pk(t − nTc), (2)

where N is the number of chips per symbol, Tc = Ts

N is
the chip interval, ck(n) is the nthchip in the spreading code
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of the kthuser, pk(t) is the received chip waveform of the
kthuser, filtered by the transmitter, receiver and the channel.
Considering a symbol synchronous system, i.e. τ1 = τ2 =
... = τK = 0, chip matched filtering and sampling of the
received signal at the chip rate N/Ts, we obtain a length N
vector y. The matrix formulation of the composite signal in
AWGN channel for a given signaling interval i is given as

y(i) = SAb(i) + n(i), (3)

where S = [s1, s2, ..., sK] is a N × K matrix of corre-
lated user signature codes. A = diag [A1, A2, ..., AK ] is a
K × K diagonal matrix of user amplitudes and b(i) =
[b1(i), b2(i), ..., bK(i)]T is a K dimensional user data at time
t = i. In the remaining sections we will assume that user 1
is the desired user and the receiver has perfect knowledge of
it’s signature code and timing.

III. INDETERMINACY IN ICA SOLUTIONS

In a CDMA channel, where the receiver observes the
superposition of the signals due to all the active users, the
situation is very similar to the linear generative signal model
widely used in ICA literature, which for a AWGN channel is
given as

y = Sb + n, (4)

where by hypothesis all the source cumulants are diagonal. In
particular, the two point correlation between the user symbols
at the same time is given as:

K0
i,j ≡ 〈bi(t)bj(t)〉 = δi,jK

0
i , (5)

where δi,j is the Kronecker delta and 〈z1, z2, ..., zk〉 denotes
the cumulant of the k random variables z1, z2, ..., zk. Without
loss of generality one can always assume that all the sources
have zero means

〈bk〉 = 0, k = 1, ...,K. (6)

If this is not the case, one has to estimate the mean values
of each source and subtract it from that source. The above
signal model is very similar to (3) with the difference of S
in place of SA. In ICA literature, the unknown matrix S is
generally termed as the mixing matrix and the components of
the vector b are the unknown sources. Given T realizations
of y it is desired to blindly estimate both the matrix S and
the corresponding realizations of b. In other words no other
information apart from the observations y is assumed in ICA
computations. An important distinction of ICA methods with
other blind identification methods is that no particular structure
is attributed to the matrix S. ICA has traditionally been used
in blind source separation problems such as the cocktail party
problem, where the signal from a room full of speakers
all talking at once is observed by a set of microphones.
Separation of these unknown speakers from the observed data
alone is precisely the task of ICA. In these applications there
is an inherent ambiguity up to a scaling and permutation.
Permutation ambiguity refers to the order of the speakers,
i.e. which speaker’s voice comes first. The scaling ambiguity
refers to the case where the separated sources differ from the
original sources by a scaling factor. If we denote the true

values of S and b as S0 and b0, then it can easily be seen that
S0M and M−1b0 will also produce the same observations
as in (4). M could be any K × K non-singular matrix. The
structure of M is further specified by the waveform preserving
relations [16] to be

M = Λ−1P, (7)

where P is a permutation matrix and Λ is a non-singular
diagonal matrix. The scaling ambiguity is generally taken
care of by constraining the column vector norm of the
mixing matrix to be unity. However, the multiuser detection
problem in communication applications does not allow for
these ambiguities. Specifically, permutation ambiguity in a
communications application translates into loss of control over
the index of the user whose symbols are to be estimated.

IV. PRIOR ICA BASED MULTIUSER DETECTION

As noted in [15], the permutation ambiguity in ICA solution
may be removed by initializing the ICA computations by some
appropriately chosen basis vector. We propose the use of the
prior information about the signature code of the desired user
to obtain useful initialization for multiuser detection problem.
For this purpose, we notice that any N × K matrix S can
be decomposed as a product of a triangular matrix L−1 and
an orthogonal (unitary) matrix Q. This gives us the following
relation

Q = LS. (8)

It is evident from (8), that the prior information about S can
be used to initialize Q for further computations. In a CDMA
system we might have partial knowledge about the signature
code matrix S. For example in the CDMA downlink scenario
where the goal is to detect a single user, the mobile handset
may have prior information about a single column of the
matrix S. Whereas in the uplink scenario the base station may
have prior information about all the active users in the channel
or about certain users whose signature codes have been locked.
In that case, multiple columns of S are known to the multiuser
detector. In the above discussion, it was assumed that the
deterministic information about the signature code about the
desired user/users is known. In a more general setting when
only available information is statistical in nature such as the
information about the pdfs of the entries of S, we have [15]

pq11(q11) =
ps11(q11/l11)

|l11| , (9)

where pq11(q11) is the pdf of the entry at position
{i, j}i=1,j=1 of the matrix Q. Note that the relation (9) is
obtained when the matrix L in (8) is a lower triangular matrix.
In this case, prior statistical information about the signature
code matrix is transformed into the prior statistical information
about the rotation matrix Q. Various ICA algorithms incorpo-
rating the prior statistical information are proposed in [15].

It is to be noted that L in (8) is a whitening matrix which can
be obtained from the SOS of the observations y. In the present
method L is obtained by performing the Q-R decomposition
on the observations, that is YT = Q1R1, where YT is a
T ×K matrix, Q1 is a T ×K matrix of orthonormal columns
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and R1 is a K × K upper triangular matrix obtained from
the economy size Q-R decomposition in MATLAB. L is then
given as L =

√
TR−T

1 . Prewhitening reduces the task of
estimating the mixing matrix S to a simpler task of estimating
Q. This transformation reflects as a computational saving in
ICA algorithms, since estimation of a n × n size S involves
estimation of n2 unknowns, where as estimation of Q involves
estimation of n(n − 1)/2 unknowns. It is also to be noted
that Q merely rotates the constellation to obtain independent
components from uncorrelated components obtained after the
whitening step. A typical example of matrix Q in a simple
2 × 2 case could be a Givens matrix denoted by

Q =
(

cos α sin α
− sin α cos α

)
,

where the unknown is only a single parameter α.
Once the initial estimate of Q has been obtained from the

relation (8), the estimate of the source data can be expressed
as

b̂ = QT ỹ, (10)

where ỹ is the whitened version of y. The task of the ICA
algorithm is then to restore the independence in b̂ by further
optimizing Q using the HOS. It is to be noted that in [14] the
ICA basis vector w was initialized by

w =
1

[sT
1 UsΛ−1

s UT
s s1]

UsΛ−1
s UT

s s1, (11)

which is the linear MMSE detector in terms of the signal
subspace parameters. It is noted that this computation requires
the eigen-decomposition of the sample data correlation matrix
given by

R =
1
T

(yyT ),

where T is the number of snapshots of y used in determination
of the matrix R. The philosophy of doing so was to exploit
the independence and non-Gaussianity of the source signals by
the use of the HOS which is not possible by the MMSE based
detectors alone. Similar initialization could be done with the
help of the subspace decorrelating detector given as

w = µUs(Λs − σ2IK)−1UT
s s1, (12)

where µ is given as

µ =
1

[sT
1 Us(Λs − σ2IK)−1UT

s s1]
.

The ICA basis vector can also be initialized by the RAKE
receiver, for details see [14]. As stated earlier, in our method
we make use of the relation (8) to initialize the ICA basis
vector for further computations. It is worthwhile mentioning
that depending on the amount of prior information we can
detect more than one users simultaneously by the proposed
method.

V. ALGORITHM IMPLEMENTATION

There have been many information theoretic approaches
towards the computation of the ICA, for a comprehensive
review see [17]. A quick summary of various ICA algorithms
can also be found in [18]. The computation of ICA may be
done either in the batch mode processing as well as in adaptive
fashion. For the purposes of this paper, we maximize the
generalized version of the cumulant based cost function [10],
first proposed in [19]

JG(w) = [E{G(wTx)} − E{G(ν)}]2, (13)

where w is a N -dimensional vector constrained so that
E{(wT x)2} = 1, ν is a Gaussian variable of zero mean and
unit variance. A suitable choice for G in a sub-Gaussian source
case is given by

G(u) =
1
4
u4

g(u) = u3, (14)

where g(.) is the derivative of G(.). If we are interested
in extracting a single independent component the approach
is termed as the sequential or the deflation approach [20].
Extraction of multiple independent components at the same
time is possible by the symmetric approach [18]. The algorithm
for detection of a single desired user by the proposed method
then becomes:

1) Collect T snapshots in a matrix Y
2) Compute the lower triangular matrix L from the data

using Q-R decomposition technique.
3) Compute one column of matrix Q from the relation (8).
4) Initialize w0 as the first column of Q, that is w0 = Q(:

, 1)/||Q(:, 1)||.
5) Update the ICA basis vector as follows:

w(t + 1) = w(t) − ζ[E{yg(wT y)} −
βw]/[E{g,(wT y)} − β]

6) Update the norm constraint w(t + 1) = w(t+1)
||w(t+1)||

7) If |wT (t)w(t+1)| is not close enough to 1, go back to
step 6.

The constant β in step 6 is given as

β = E{wT yg(wT y)},
and ζ in step 5 is a step size parameter that may change with
the iteration count. In the present algorithm, we avoid the
need for explicit subspace computations as done in [14] which
make the present algorithm attractive from computational point
of view apart from eliminating the indeterminacy in ICA
solution. The algorithm presented above is for the case when
the deterministic prior information about the user signature
code is available with the receiver, however it’s generalization
in a CDMA system might be possible with the help of [15].

VI. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
algorithm in a multiuser synchronous CDMA system. For
simplicity we consider the AWGN channel. Perfect knowledge
of the desired user’s signature code and timing is assumed.
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Fig. 1. Performance of Prior ICA based detector in comparison with MMSE initialized detector with K=5 Users:(a) Equal Energy Scenario., (b) Unequal
Energy Scenario. Correlation between users is as per Table-I

We consider the cases of perfect power control and no power
control in the system. The number of data points taken in the
simulations is 1000 and the simulation results are averaged
over 200 Monte-Carlo experiments. The signature codes of the
users are generated by first generating unit energy Hadamard
codes of length N = 16 and then the desired correlation
between them is induced as per the Table-I. The number of
users considered in the simulation is K = 5 and K = 10 .

TABLE I

Cross-Correlation of the Interfering Users Code with that of
the Desired User.

User Number Cross-Correlation with User No. 1

1 1.000
2 0.400
3 -0.032
4 0.097
5 0.226
6 -0.032
7 -0.290
8 0.097
9 0.226
10 0.200

For the first example, we take five equal energy users in the
CDMA channel with correlation values as per table-I and com-
pare the performance of the proposed detector with the ICA
assisted MMSE detector of [14]. Both MMSE-ICA detector
and the proposed QR-ICA detectors are quasi-blind methods
in the sense that they do not have any information about the
users except the desired one. In the simulations, we compute
the initial ICA basis vector using the triangular-orthogonal (Q-
R) decomposition of the received data, it was however noted
that a similar performance can be obtained if we chose the ICA
basis vector with the help of a generalized whitening matrix,
computed using the signal subspace parameters. The learning

constant ν was taken to be 0.35 in the simulations. In Fig. 1 (a)
we simulate the performance of the system in a varying SNR
environment with K=5 equal Energy users. Data modulation is
binary phase shift keying (BPSK). It is seen that the ICA basis
vector initialized by the proposed algorithm is able to achieve
better BER performance than the previously proposed MMSE
initialized ICA approach. For comparison purposes, the per-
formance is also compared with the conventional matched
filtering approach where the detector is simply taken to be the
signature code of the desired user. The conventional mono-
component detector performs poorly due to the correlated
signature codes of the users in the channel. For Fig. 1 (b),
we take 5 unequal energy users with the correlation values
given in Table-I. The interfering users are 10 dB above the
desired user’s power. In this case also the performance of
the proposed detector is better than the MMSE-ICA detector.
Due to the power imbalance in the system, in this case the
conventional detector has probability of error almost equal to
0.5 (near-far effect). Fig. 2 depicts the performance under the
same environment but with increased number of users. The
performance in this case is similar to that of Fig. 1. It is seen
from the comparison of Fig. 1 (a) and Fig. 2 (a) that in case of
equal energy users the performance of MMSE initialized ICA
and QR initialized ICA are close in comparison with that of
Fig. 1 (b) and Fig. 2 (b), this is because the power imbalance
causes the conditioning of the received data correlation matrix
to deteriorate. This deterioration adversely affects the accuracy
of the subspace parameters and hence the performance of the
MMSE-ICA detector deteriorates where as QR-ICA has no
subspace computations involved and it’s performance is not
affected as much by the power imbalance.

VII. CONCLUSIONS

In this paper, we have presented a prior-ICA based multiuser
detection approach towards solving the indeterminacy problem
arising in ICA algorithms. The proposed detector incorporates
prior information regarding the desired user’s signature code,
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Fig. 2. Performance Comparison of Q-R initialized ICA detector with MMSE initialized detector with K=10 Users: (a) Equal Energy Scenario, (b) Unequal
Energy Scenario. Correlation between users is as per Table-I

initializes the ICA basis vector in the ICA computations using
a Q-R decomposition on the received data, and avoids the need
for tedious subspace computations required by the subspace
MMSE and CC-ICA approaches. Simulation results indicate
that the performance of the proposed algorithm is significantly
better than the subspace MMSE-ICA approach in the absence
of power control in the system.
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