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ABSTRACT

The eigenvalue degeneracy problem inherent in the discrete Fourier

transform (DFT) matrix operator and the development of a full ba-
sis of orthogonal eigenvectors have been addressed via a commuting
matrix, devoid of the aforementioned eigenvalue degeneracy prob-
lem, that also serves as a discrete version of the Gauss-Hermite (G-
H) differential operator.

This G-H operator is however, is not bandlimited, and existing
discretization efforts run into distortion problems that manifest as
deviation from the ideal linear eigenvalue spectrum, aliasing in the
eigenvectors, and as a non-invertible peak to parameter mapping as-
sociated with the discretization restricting its ability to uniquely rep-
resent multicomponent chirp signals. Existing approaches do not
account for the effects of windowing on discretization.

In this paper, we focus on distortion issues associated with the
discretization of the G-H operator and their sources. We specifically
analyze the discrete version of the G-H operator based on quantum
mechanics in finite dimensions (QMFD), by computing its underly-
ing peak to parameter mapping and its invertibility to subsequently
present a representation of the operator with improved mapping in-
vertibility via use of suitable windowing of the eigenvalue spectrum.

Keywords: discrete Fourier transform, eigenvectors, discrete
Fractional Fourier transform, aliasing, peak to parameter

mapping, quantum mechanics in finite dimensions, windowing.

1. DISTORTION SOURCES

In recent years, the fractional Fourier transform (FRFT) has become
a very useful tool for time-frequency analysis for signals with mod-
ulation [2]. The kernel of the continuous-time FRFT [2] is given
by:

K↵(t, u) =

r
1� j cot↵

2⇡
exp

�
j(t2 + u

2) cot↵/2� jtu csc↵
�

The corresponding Mehler’s expansion for the chirped kernel is:

K↵(t, u) =
1X

k=0

exp (�jk↵)hk(t)hk(u), (1)

where hk(t) denoted the k-th Gauss-Hermite (G-H) function. This
chirped kernel produces a Dirac impulse for the FRFT, when the
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input signal is a chirp signal with a specified center-frequency !o

and chirp rate cr for a specific angle ↵o:

X↵o(u) = exp

✓
j
cot↵o

2
u
2

◆r
1� j cot↵o

2⇡

⇥ 2⇡�(!o � u csc↵o) for ↵o = cot�1(�2cr).

This chirped kernel of the FRFT is however, not bandlimited, and
causes distortion in discrete versions of the FRFT.
Existing commuting methods for computing the discrete version of
the FRFT (DFRFT) [4, 5, 3] use a eigenvalue decomposition of the
form:

A↵(x) = V⇤
2↵
⇡ VTx =

N�1X

k=0

exp(�jk↵)vkv
T

k x, (2)

where V is a fully orthogonal basis of DFT or CDFT eigenvectors,
obtained from a commuting matrix, that serve as discrete counter-
parts of the G-H functions. As seen in earlier work [8], the effects of
discretization results in a non-invertible peak to parameter mapping
restricting the capabilities of the DFrFT.

2. SOURCES OF DISRETISATION ERRORS

From Eq. (1) and Eq. (2), we can observe that in the transition from
the continuous to the discrete FRFT, there are two phenomena hap-
pening:

1. Truncation or windowing of the IIR eigenvalue sequence of
the G-H operator with a rectangular window of duration N

samples:
�w[k] = exp(�jk↵)w[k],

where w[n] is the N -point boxcar window [1]. This is analo-
gous to the window based FIR filter design technique, where a
IIR impulse response is approximated with an FIR windowed
equivalent or spectral analysis using the DFT. This will result
in spectral distortion of the eigenvalue sequence:

⇤w(e
j!) = W (ej(!�↵)),

where W (ej!) denotes the DTFT of the window function [1]
used. The boxcar window produces the narrowest main lobe
but has the smallest main lobe to sidelobe spectral amplitude
ratio, thereby producing more sidelobes in the DTFT of the
windowed eigenvalue sequence. Existing approaches towards
G-H operator discretization, however, do not accommodate
windowing effects.

233978-1-5386-1823-3/17/$31.00 ©2017 IEEE Asilomar 2017



160 170 180 190 200 210 220 230 240 250

EIGENVALUE    INDEX     k

5

10

15

20

25

30

S
Y

M
M

  
  
D

IF
F

  
 O

F
  
 E

IG
. 
 S

P
E

C
T

R
U

M
N = 256, EFFECT  OF  WINDOW

HANNING

KAISER, β = 1.2

RECT

Fig. 1. Effect of windowing on the eigenvalue spectrum: symmet-
ric difference of the eigenvalue spectrum of the commuting matrix
using different windows on the diagonal matrix Q2. Windowing us-
ing an appropriate data window reduces the deviation from a linear
eigenvalue spectrum at the tail-end of the eigenvalue spectrum.

2. Discretization or sampling of the G-H functions to yield
DFT/CDFT eigenvectors which will in turn result in spectral
aliasing in the eigenvectors corresponding to the higher G-H
modes with frequency content at the edges of |!| < ⇡:

Vk(e
j!) =

1
Ts

1X

k=�1

Hk

✓
! � 2k⇡

Ts

◆
, |w| < ⇡,

where Ts is the sampling period associated with the dis-
cretization of the G-H functions.

Several commuting matrix approaches towards furnishing the uni-
tary basis of DFT/CDFT eigenvectors have been studied [4, 5, 3]
staking the claim that they are discrete versions of the G-H operator.

In this paper, we focus on the distortion issues identified above,
that arise in the G-H operator discretization and in particular, incor-
porate windowing effects into the QMFD approach [3]. We further
investigate extensions of the QMFD approach [3, 7], in light of these
sources, that result in a commuting matrix and associated eigenvec-
tors with a reduced degree of distortion. We further show through
simulation results that a suitable choice of window applied to the
eigenvalue sequence of the discrete operator results in improvement
of the invertibility of the underlying peak to parameter mapping and
to the associated mean squared errors of chirp parameter estimates
that are of importance in SAR vibrometry applications [9, 10].

3. QMFD APPROACH: DIAGONAL Q AND
QUASI-TOEPLITZ MATRICES

We first focus our attention on the QMFD approach in [3, 7]:

Q =

r
2⇡
N

diag (�m, . . . ,m)

P = WQWH

T = P2 +Q2
, (3)

where Q and P denote the finite dimensional position and momen-
tum operators and W denotes the centered version of the DFT:

Wrs =
1p
N

exp

✓
�j

2⇡
N

(r �m)(s�m)

◆
, 0  r, s  N � 1

with m = (N � 1)/2. As was shown in [3], for the matrix T to
commute with either version of the DFT, the matrix Q2 needs to be
W2-centro-symmetric:

W2Q2W2 = Q2
.

If we further require the commutator C = [Q,P] to commute with
the DFT, this implies that we require the matrix Q to be W2-anti-
symmetric [3]:

W2QW2 = �Q.

Here we specifically focus on the elements of the matrix P:

Prs =
N�1X

l=0

N�1X

m=0

WrlQlmW⇤
ms (4)

Substituting the diagonal form of Q into this expression yields:

Prs =

r
2⇡
N

N�1X

l=0

(l �m) exp

✓
�j

2⇡
N

(l �m)(r � s)

◆
. (5)

Specifically the matrix Q is non-diagonal, is purely imaginary be-
cause its elements are the DFT of an odd function. The matrix Q is
also Toeplitz since the matrix elements depend only on (r� s). In a
similar fashion, we can evaluate the matrix elements of the commut-
ing matrix T via:

Trs =
2⇡
N

8
>>>><

>>>>:

N�1X

l=0

(l �m)2 exp

✓
�j

2⇡
N

(l �m)(r � s)

◆
r 6= s

(r �m)2 +
N�1X

l=0

(l �m)2 r = s

The following symmetries can be inferred from the matrix elements:
1. for the diagonal form of the Q matrix and either form of the

DFT, either the centered or the regular, the underlying com-
muting matrix has almost-Toeplitz symmetry.

2. Only main diagonal elements are different and follow a
square law in accordance with the (r�m)2 or the (r�m�1)2

terms. Non-Toeplitz behavior of the commuting matrix is a
consequence of non-Toeplitz1 behavior of the matrix Q.

3. The commuting matrix will also have J-symmetry about
r = m along the diagonal for the centered DFT and W2-
symmetry about r = m+ 1 along the diagonal for the DFT.

4. The commuting matrix is further positive semi-definite:

xHTx = xH(PHP+QHQ)x = ||Px||22 + ||Qx||22 � 0

This motivates the equivalence of the commuting matrix T to the
auto-correlation matrix of a weakly non-stationary time-series with
elements:

2⇡
N

N�1X

l=0

(l �m� 1)2 exp

✓
�j

2⇡
N

(l �m)(r � s)

◆
r 6= s

2⇡
N
(r �m� 1)2 + 2⇡

N

N�1X

l=0

(l �m� 1)2 r = s

.

1A Toeplitz operator will produce a purely stationary basis of eigenvectors
comprised of cosines and sines.
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This weakly non-stationary time-series, autocorrelation viewpoint,
exposes the aliasing in the almost-Toeplitz framework, since the
quadratic power spectral term is not band-limited. The conclusion
derived from this viewpoint is that the QMFD discretization of the
non-bandlimited G-H operator will result in distortion that mani-
fests as aliasing in the eigenvectors and a deviation from the linear
eigenvalue spectrum of the G-H operator.

The time-series viewpoint also explicitly describes the window-
ing effects on the elements of the quasi-Toeplitz commuting matrix.
Specifically the elements of the Q2 matrix are windowed with a rect-
angular window of duration N samples:

Q2
w = ⇤wQ

2
, (6)

where ⇤w is a diagonal matrix with the window samples along the
diagonal. By an appropriate choice of the window, we can affect the
eigenvalue spectrum of the commuting matrix as depicted in Fig. (1),
where we use a Kaiser window of duration N = 256 and parameter
� = 1.2. The Kaiser window is chosen due to the degree of freedom
that the parameter � affords in main lobe to side lobe trade-off. This
has the effect of smoothing the fluctuations in the eigenvalue spec-
trum at the tail end as evident from Fig. 2 and expanding the region
of the invertibility of the peak to parameter mapping [8]. To further
reduce the distortions resulting from the truncation of the eigenvalue
sequence of the G-H operator we now consider the case of the non-
diagonal Q, where we force the DFT commuting matrix to possess
a linear eigenvalue spectrum.

4. QMFD APPROACH: NON-DIAGONAL Q CASE

As described in [7], the QMFD method needs to be modified so that
the equations of motion are satisfied in the centered-DFT or regular-
DFT basis. This is based on the observation that the Q and P tridiag-
onal basis corresponds to a diagonal number operator and a diagonal
DFT operator. To obtain the number operator in the centered DFT
basis or the regular DFT basis we similarity transform via the eigen-
vectors of the DFT or the CDFT obtained from the previous section.
Specifically the Q and P tridiagonal matrices in the N -diagonal ba-
sis or the DFT diagonal basis are:

Qo =
1p
2
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The number operator in this tridiagonal representation is just the di-
agonal matrix:

No = diag(1, 3, 5, 7, . . . , 2N � 1) (7)

These quantities in the DFT basis are obtained via similarity trans-
formation using the DFT eigenvectors V obtained from the previous
section:

Qnew = VQoV
H and Pnew = VPoV

H (8)

The corresponding number operator in the DFT basis is:

T = PH

newPnew+QH

newQnew = P2
new+Q2

new = VNoV
H
, (9)

where V are the orthogonal or unitary DFT eigenvectors obtained
via the previous section with the almost-Toeplitz number operator.
This transformed number operator by construction has a odd integer
eigenvalue spectrum, and its eigenvectors are the DFT eigenvectors.
This matrix therefore commutes with the appropriate DFT:

TW = WT or [W,T] = 0.

The transformed number operator is however, not almost-Toeplitz as
in the previous section but a W2-symmetric matrix corresponding
to a non-diagonal Qnew matrix:

W2TW2 = TW4 = T,

where we have used the observation that [W,T] = 0. Since the
new number operator was constructed from the eigenvectors from
the previous almost-Toeplitz framework, they carry with them the
distortion due to truncation and aliasing. However, the distortion is
reduced, in that the eigenvalue spectrum is closer to that of the G-H
operator than what was obtained in the previous framework, thereby
reducing one of the sources of distortion discussed in the introduc-
tion section. The characteristic feature of this approach is that we
are specifying the eigenvalue sequence of the commuting matrix to
be the truncated odd numbered spectrum. We can further reduce the
effects of windowing of the eigenvalue sequence by choosing the
window so that the eigenvalue sequence is:

�w[k] = (2k + 1)w[k], 0  k  N � 1,

where w[k] is an appropriately chosen window [1] that minimizes
the effects of eigenvalue truncation. Figure 3 compares the peak to
parameter mapping underlying both the diagonal Q approach and
the non-Toeplitz framework for N = 256 using the Kaiser window.
The mapping depicts a slight improvement in terms of invertibility
of the mapping from 84.55 percent to 85.33 percent. This improve-
ment is attributable to the fact that the eigenvalue spectrum in the
non-diagonal Q case accommodates the effects of eigenvalue trun-
cation. Figure 4(a) depicts the DFRFT spectra for a chirp signal for
different values of the Kaiser window parameter �. For � = 15
with the non-diagonal Q formulation, we observe that there is sig-
nificant distortion of the peaks arising from truncation. As can be
observed specific values of the � parameter result in steeper slopes
on the peaks of the underlying DFRFT spectrum. From Figure 4(b,c)
we observe that the slopes of the spectral peaks are much steeper for
� = 1.2 than for � = 0.001. Figure 4(d) depicts the eigenvalue
spectrum corresponding to the different values of the Kaiser window
parameter.

Figure 5(a) depicts the percentage invertibility associated with
the Q-windowing approach, the eigenvalue windowing approach,
and the joint windowing approach using a Kaiser window with pa-
rameter � = 1.2. As can be observed, the joint windowing approach
improves the invertibility of the peak to parameter mapping in rela-
tion to the other options. Furthermore, the improvement offered by
the windowing approach is more significant for smaller transform
sizes N , due to fact that the distortion due to truncation effects is
more significant for these smaller values for N , where the invertibil-
ity approaches 91 % for larger matrix sizes N . Invertibility of the
mapping as pointed out in [8] impacts the MSE of the corresponding
chirp parameter estimates.
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Fig. 2. Peak to parameter mappings for N = 256 : (a) quasi-Toeplitz framework, and (b) non-diagonal Q formulation for the minimum-norm
approach. The invertibility percentage of the mappings corresponding to the two operators are 84.55 percent and 85.33 percent respectively.
The continued presence of a non invertible region in the mapping is a consequence of the truncation and aliasing distortion discussed in the
introduction.
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Fig. 3. Effect of windowing eigenvalue sequence: (a) DFRFT spectrum magnitude for Kaiser window with N = 256, � = 15, (b) DFRFT
spectrum magnitude for Kaiser window with N = 256, � = 0.001, (c) DFRFT spectral magnitude for � = 1.2, and (d) eigenvalue spectrum
with different Kaiser window parameters. Note that we obtain steeper slopes on the peaks of the DFRFT magnitude spectrum for � = 1.2
and for � = 15 we observe a significant amount of aliasing.

236



100 200 300 400 500

TRANSFORM   SIZE    N

50

55

60

65

70

75

80

85

90

P
E

R
C

E
N

T
A

G
E

  
  

IN
V

E
R

T
IB

IL
IT

Y

EFFECT  OF  WINDOW

QMFD-OLD

EWIN-1.2

QWIN-1.2

BOTH-0.9

Fig. 4. Invertibility improvement: percentage of invertible pixels
in the peak to parameter mapping for Q-windowing alone, with a
Kaiser window with parameter � = 1.2, for eigenvalue windowing
alone, using a Kaiser window with � = 1.2, and combined window-
ing using a Kaiser window with parameter �1,2 = 0.9

5. CONCLUSION

In this paper, we studied the problem of discretizing the Gauss-
Hermite operator and the two basic sources of distortion: (a) eigen-
value truncation resulting in spectral distortion of the eigenvalue se-
quence, and (b) sampling of the eigenfunctions resulting in eigen-
vector aliasing. We studied two classes of matrices that commute
with either the centered DFT or the regular DFT in the context of the
QMFD method developed in [3] in terms of the distortion introduced
in the transition from the continuous to the discrete FRFT.

We first studied the quasi-Toeplitz framework where the cor-
responding Q matrix is diagonal and developed a weakly non-
stationary time-series viewpoint to expose distortion due to dis-
cretization in the approach. Means to minimize this distortion, such
as windowing of the diagonal Q matrix with an appropriately cho-
sen window function were studied. We then incorporated eigenvalue
windowing into the more general approach to mitigate truncation
effects at the end of the eigenvalue spectrum. A Kaiser windowed
version of the truncated odd integer eigenvalue spectrum, resulted
in sharper peaks in the underlying DFRFT spectra in comparison to
the boxcar windowed spectra and eventually translated to a wider in-
vertibility region for the peak to parameter mappings. Improvement
from windowing is specifically more pronounced for smaller matrix
sizes, where the distortion from discretization is more pronounced.

6. REFERENCES

[1] F. J. Harris, “On the Use of Windows for Harmonic Analysis
with the Discrete Fourier Transform,” Proc. of IEEE, Vol. 66,
pp. 51-83, 1978.

[2] L. B. Alameida, “The Fractional Fourier Transform and
Time-Frequency Representations,” IEEE Trans. Sig. Process.,
Vol. 42, No. 11, pp. 3084-3091, 1994.

[3] Balu Santhanam and T. S. Santhanam, “On Discrete Gauss-
Hermite Functions and Eigenvectors of the Discrete Fourier
Transform,” Signal Processing, Vol. 88, No. 6, pp. 2738 - 2746,
November 2008.

-30 -20 -10 0 10 20 30

Signal/Noise (dB)

-80

-60

-40

-20

0

20

M
e

a
n

 S
q

u
a

re
 E

rr
o

r 
(d

B
)

Center Frequency Estimation

Normal

Window

WcLb

(a)

-30 -20 -10 0 10 20 30

Signal/Noise (dB)

-100

-80

-60

-40

-20

0

M
e

a
n

 S
q

u
a

re
 E

rr
o

r 
(d

B
)

Chirp Rate Estimation

Normal

Window

CrLb

(b)

Fig. 5. (a,b) Impact of windowing on the MSE of parameter esti-
mates from the minimum-norm algorithm, depicting improved in-
vertibility of the underlying peak to parameter mapping with com-
bined Q-matrix and eigenvalue windowing.

[4] B. Dickinson and K. Steiglitz, “Eigenvectors and Functions of
the Discrete Fourier Transform,” IEEE Trans. Sig. Process.,
Vol. 30, No. 1, pp. 25 - 31, February 1982.

[5] F. Grunbaum, “The eigenvectors of the Discrete Fourier trans-
form: A version of the Hermite functions,” Journal of Math-

ematical Analysis and Applications, Vol. 88, No. 2, pp. 355 -
363, August 1982.

[6] S. Clary and D. Mugler, “Shifted Fourier Matrices and their
Tridiagonal Commutors,” SIAM Journal Matrix Analysis and

Applications, Vol. 24, No. 3, pp. 809 - 821, January 2003.
[7] Thalanayar Santhanam and Balu Santhanam, “The Discrete

Fourier Transform and the Quantum Mechanical Oscillator in
a Finite-Dimensional Hilbert Space,” Journal Of Physcis A:

Theoretical, Vol. 42, pp. 205303, May 2009.
[8] Ishwor Bhatta and Balu Santhanam, ” A Comparative Study Of

Commuting Matrix Approaches For The Discrete Fractional
Fourier Transform,” Proc. of IEEE Signal Processing and SP

Education Workshop, pp. 103-108, 2015.
[9] Q. Wang, M. Pepin, R. J. Beach, R. Dunkel, T. Atwood,

B. Santhanam, W. Gerstle, A. W. Doerry, and M. M. Hayat,
”SAR-based Vibration Estimation using the Discrete Frac-
tional Fourier Transform,” IEEE Trans. Geoscience and Re-

mote Sensing, Vol. 50, No. 10, pp. 4145-4156, 2012.
[10] Q. Wang, M. Pepin, A. Wright, R. Dunkel, T. Atwood, B. San-

thanam, W. Gerstle, A. W. Doerry, and M. Hayat, ” Reduction
of Vibration-Induced Artifacts in Synthetic Aperture Radar Im-
agery, ” IEEE Trans. Geoscience and Remote Sensing, Vol. 52,
No. 6, pp. 3063-3073, 2014.

237


