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ABSTRACT

In prior work, the AM-FM signal model coupled with domi-
nant component analysis has been used for fingerprint extrac-
tion for eventual fingerprint recognition. In earlier work by the
authors, multirate frequency transformations were employed to
transform wideband signals into narrowband signals to effect
wideband AM-FM demodulation of both 1D and 2D signals. In
this paper, we apply the 2D, wideband AM–FM energy-based
demodulation approach towards AM–FM feature extraction and
recognition. Simulation results are used to demonstrate the effi-
cacy of the proposed approach.

Keywords: Wideband image, AM-FM demodulation, mul-
tirate frequency transformations, higher order energy operator,
fingerprint image analysis

1. INTRODUCTION

The amplitude-modulation frequency-modulation (AM-FM) [2]
representation model has found various applications with im-
ages recently including image analysis, texture processing and
fingerprint classification [5, 6, 7]. According to earlier work by
Havlicek, Bovik et al., nonstationary images can be modeled as
superpositions of multiple AM-FM components [7]:

I(x, y) =

n∑
i=1

ai(x, y) cos (φi (x, y)) . (1)

The multi-component AM-FM image is first decomposed by
a set of bandpass filters such as Gabor filterbanks or the Bi-
dimensional empirical mode decomposition (BEMD). Each re-
sulting monocomponent AM-FM image is further demodulated
into corresponding instantaneous amplitude (IA) a(x, y) and in-
stantaneous frequency vector (IF),

∇φ(x, y) =

[
∂φ(x, y)

∂x
,
∂φ(x, y)

∂y

]T
. (2)

In particular, the IA of the image depicts the contrast present in
the image while the IF reveals the locally emergent frequency
variation. Conventional image demodulation approaches are ei-
ther based on 2D extension of the analytic signal (AS) or 2D
extension of the energy separation algorithm (ESA) with addi-
tional processing techniques such as dominant component anal-
ysis (DCA).

However in both prior approaches, narrowband assumptions
were imposed on each AM-FM component of the image. For
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example, most literature inexplicitly assumes the AM-FM im-
age to be globally wideband yet each of its component to be
locally narrowband. In general, both the IA, a(x, y) and the
IF, ∇φ(x, y) of a single component are assumed to be slowly
varying, otherwise the approximations inherent in most demod-
ulation approaches are no longer valid and incur significant error
especially under the wideband scenario.

In prior work, we have proposed the novel bi-directional
multirate frequency transformation (MFT) approach [1, 4] that
can be combined with a variety of demodulation techniques to
enhance their demodulation performance traditionally limited by
the narrowband constraints on the frequency modulation part of
the monocomponent AM-FM image [4]. In this paper, we apply
the BMFT approach to the fundamental AM–FM component of
fingerprint images, typically a wideband image, to demonstrate
that significantly improved demodulation results and enhanced
IF features with better defined ridges are achievable.

2. BMFT PRIMER

Here we briefly review the BMFT approach developed in prior
work, assume that the input is a monocomponent wideband FM
image of the form:

J(x, y) = A cos (φ(x, y)) . (3)

It is first compressed in frequency domain by appropriate fac-
tors ~R = diag[Rx, Ry], which corresponds to spatial expansion
given by

J1(x, y) = A cos

(
φ

(
x

Rx
,
y

Ry

))
. (4)

Then we heterodyne the resultant image by a frequency transla-
tion vector ~Ω = [Ωx,Ωy] via

J2(x, y) =J(x, y) cos(Ωxx) cos(Ωyy)

=
A

2
cos

(
Ωxx+ φ

(
x

Rx
,
y

Ry

))
cos(Ωyy)

+
A

2
cos

(
Ωxx− φ

(
x

Rx
,
y

Ry

))
cos(Ωyy)

=
A

4
cos

(
Ωxx+ Ωyy + φ

(
x

Rx
,
y

Ry

))
+
A

4
cos

(
Ωxx− Ωyy + φ

(
x

Rx
,
y

Ry

))
+
A

4
cos

(
Ωxx+ Ωyy − φ

(
x

Rx
,
y

Ry

))
+
A

4
cos

(
Ωxx− Ωyy − φ

(
x

Rx
,
y

Ry

))
.

(5)



A 2D separable bandpass filter then extracts the desired high-
frequency term through

J̃(x, y) = J2(x, y) ∗ hBP (x, y)

≈ A

4
cos

(
Ωxx+ Ωyy + φ

(
x

Rx
,
y

Ry

))
=
A

4
cos
(
φ̃(x, y)

)
.

(6)

The BMFT approach has two specific goals:

1. Increase the carrier (or mean) frequencies of the modu-
lation in both dimensions via the frequency translation
vector ~Ω = [Ωx,Ωy].

2. Reduction of the bandwidth of the modulating image by
the appropriate conversion factors R = diag[Rx, Ry].

The motivation behind these two goals is to increase the CR/FD
and CR/IB ratios of the image on both directions and enable the
application of narrow band AM–FM demodulation [1, 4]. We
recover the IF of the input image from the IF estimation of the
transformed image J̃(x, y). The IF components of J(x, y) and
J̃(x, y) are given by

Ω1(x, y) =
∂φ(x, y)

∂x
, Ω2(x, y) =

∂φ(x, y)

∂y
,

Ω̃1(x, y) =
∂φ̃(x, y)

∂x
, Ω̃2(x, y) =

∂φ̃(x, y)

∂y
.

The IF and IA estimates of the input image are computed via:

Ω1(x, y) = Rx
(

Ω̃1(Rxx,Ryy)− Ωx
)
, (7)

Ω2(x, y) = Ry
(

Ω̃2(Rxx,Ryy)− Ωy
)
, (8)

A(x, y) = Ã (Rxx,Ryy) , (9)

where Ω̃1(Rxx,Ryy) and Ω̃2(Rxx,Ryy) represent spatial
compression (or frequency expansion) of the IF estimation for
the transformed image J̃(x, y). We further assume that the vari-
ation of the IA of the image is slow varying in either dimension.

In order to implement the BMFT in discrete time, we re-
place compression and expansion in frequency domain by their
discrete equivalences. Note that the compression in frequency
domain corresponds to interpolation while the expansion cor-
responds to decimation. As a result, the block diagram of the
BMFT demodulation is depicted in Fig 1. The BMFT is imple-
mented through discrete-time operations of interpolation, het-
erodyning, and bandpass filtering.

3. DEMODULATION OF FINGERPRINT IMAGES

3.1. Dominant Component Analysis

According to prior work by Pattichis et al., a given image
I(x1, x2) can be approximated by

I(x1, x2) ≈ a(x1, x2)
∑
n

Hn exp[jnφ(x1, x2)], (10)

whereHn denotes the Fourier series coefficient and the subscript
has been dropped from the phase function.

Let g denote the impulse response of a linear system, the
response t(x1, x2) to the given image expressed as a sum of
AM-FM harmonics can be approximated by [2, 3]:

t(x1, x2) ≈a(x1, x2)
∑
n

|G[n∇φ(x1, x2)]|Hn

× exp{jn∇φ(x1, x2) + 6 G[n∇φ(x1, x2)]}
(11)

where G denotes the Fourier transform of g and 6 denotes the
angle argument symbol. A realistic assumption is to require that
the local power captured in the fundamental AM-FM component
is always higher than any other harmonic. Hence the patterns
and features of the fingerprint are likely to be captured by the
fundamental AM-FM component.

DCA is then applied to the fingerprint image to obtain the
fundamental AM-FM component:

• Filter the fingerprint image via a set of Gabor channel fil-
ters with response gi, we obtain different channel output
images ti = I ∗ gi.

• Estimate the instantaneous amplitude ai(x1, x2) for each
channel using conventional demodulation techinques.
For each pixel, we select the channel with the maximum
amplitude estimate as the output.

• Smooth the resultant fundamental AM-FM component
using 2D smoothing filters to reduce the noise.

3.2. Fundamental AM-FM Component Demodulation

Since the fundamental AM-FM component is determined by
outputs of multiple channels, it is in general not as narrowband
as each channel output. Hence traditional demodulation tech-
niques based on narrowband assumption may incur significant
error. This motivates the application of the combination of the
BMFT framework and higher-order energy operators (HOEO)
to demodulate the fundamental AM-FM component. Salzen-
stein, Diop and Boudraa recently proposed an extension of the
classical ESA using the HOEO and was shown to provide better
performance for narrowband AM-FM images than the classical
2D ESA [4]. The k-order HOEO in 1D for any given signal s(t)
is defined by

Ψk[s(t)] =
∂s(t)

∂t

∂k−1s(t)

∂tk−1
− s(t)∂

ks(t)

∂tk
, (12)

where Ψ2 refers to the commonly used Teager-Kaiser energy op-
erator. For a given image I(k, l), the discrete-time higher order
demodulation algorithm (DHODA) can be summarized via:

I1(k, l) =
1

2
[I(k + 1, l)− I(k − 1, l)],

I2(k, l) =
1

2
[I(k, l + 1)− I(k, l − 1)],

I12(k, l) =
1

2
[I2(k + 1, l)− I2(k − 1, l)],

Ψ2[I(k, l)] ={2[I(k, l)]2 − I(k − 1, l)I(k + 1, l)

− I(k, l − 1)I(k, l + 1)}+ 2[I1(k, l)I2(k, l)

− I(k, l)I12(k, l)],

I112(k, l) =
1

2
[I12(k + 1, l)− I12(k − 1, l)],

I212(k, l) =
1

2
[I12(k, l + 1)− I12(k, l − 1)],



Fig. 1. Block diagram of the BMF based wideband image demodulation approach.

|â(k, l)| =
(

Ψ2[I1(k, l)]Ψ2[I2(k, l)]

Ψ2[I112(k, l) + I212(k, l)]

)1/2

, (13)

|Ω̂1(k, l)| = arcsin

((
Ψ2[I12(k, l)]

Ψ2[I2(k, l)]

)1/2
)
, (14)

|Ω̂2(k, l)| = arcsin

((
Ψ2[I12(k, l)]

Ψ2[I1(k, l)]

)1/2
)
, (15)

where â(k, l) is the IA estimation while Ω̂1(k, l) and Ω̂2(k, l)
are the IF estimates along the spatial axes of the image1.

4. EXPERIMENTAL RESULTS

A separable FIR bandpass filter with 1025 taps in each direc-
tion are employed in the BMFT heterodyne module. Separable
heterodyning along with separable bandpass filters are chosen
to reduce the complexity of the BMFT system. A multichannel
Gabor fllterbank with eight rays or orientations and nine radial
frequencies per ray are used to isolate the fundamental FM com-
ponent [7]. A 3 × 3 Gaussian filter is used to smooth the DCA
image prior to demodulation. Residual low frequencies appear
as a background in the DCA image.

Figure 2(a) describes a finger print image and Fig. (2b) de-
scribes the fundamental AM–FM component extracted using the
Gabor filterbank described before. Figure 3(b,c) depicts the IF
needle plot associated with the application of the directional
Hilbert transform [7] to the original image and the fundamental
FM component. The needle plot of the IF of the dominant AM-
FM component shows that the fundamental AM–FM component
has better defined ridges in comparison to direct demodulation
of the original image.

Figure 4 (a,b) depict the application of the BMFT approach
with directional Hilbert transform demodulation of the dominant
component for conversion factors of 8 and 16 respectively. The
IF needle plots further depict a significant improvement in the
IF needle plots in comparison to the results without the BMFT.

1ESA based approaches require IF components ranging between 0
and π

2
, or up to a fourth of the sampling frequency due to the inverse

sine function.

5. CONCLUSION

In this paper, we have applied recent work on wideband image
demodulation using bi-dimensional multirate frequency trans-
formations and higher-order energy operators to the problem
of demodulating wideband fingerprint images. Results indicate
clearly that significant reduction in the IF demodulation error
and more refined IF derived features with better defined ridges
can be attained by combining dominant AM–FM component
analysis and the BMFT framework to obtain better recognition
performance with latent fingerprint images.
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Fig. 2. Fundamental AM-FM component. (a) Original fingerprint image. (b) Fundamental AM-FM component extracted via DCA
using the Gabor filterbank approach outlined in [5, 6].
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Fig. 3. (a) Original zoomed in fingerprint image. (b) IF needle plot of the original fingerprint via the directional Hilbert transform.
(c) IF needle plot of the estimated fundamental AM-FM component via the directional Hilbert transform.
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Fig. 4. (a) IF needle plot of the estimated fundamental AM-FM component via the BMFT with factors [8, 8] and the DHODA. (b) IF
needle plot of the estimated fundamental AM-FM component via the BMFT with factors [16, 16] and the DHODA.


