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Abstract—Recently, a time-frequency method based on the
discrete fractional Fourier transform (DFrFT) was proposed
for estimating target vibrations using synthetic aperture radar
(SAR). Later on, a subspace method was incorporated into the
DFrFT-based method. It is shown that the subspace method
provides better performance than the direct DFrFT-based method
in noise. However, the performance of these two methods has not
been studied in clutter that cause strong interference with signals
from vibrating targets in real-world applications. In this paper,
the performance of the two vibration estimation methods in
clutter is characterized and compared via simulations. Simulation
results demonstrate that the DFrFT-based method, that yielded
reliable results when signal-to-clutter ratios (SCR) exceeds 18
dB, now yields reliable results when SCR exceeds 8 dB with
the incorporation of the subspace method. Experimental results
show that the subspace method correctly estimates the vibration
frequency of a 7 Hz vibration from actual SAR data at an
estimated SCR of 14 dB.

Index Terms—synthetic aperture radar, micro-Doppler effect,
fractional Fourier transform, subspace methods, vibration esti-
mation, clutter

I. INTRODUCTION

Vibration signatures associated with various structures bear
vital information about these structures; therefore, it is key
to have the capability of estimating the vibration signatures.
A lack of physical access to these structures typically makes
the problem of detecting such activities challenging by cur-
rent means. Synthetic aperture radar (SAR) has already been
proven as a highly effective remote-imaging technique [1].
Moreover, it is inherently capable of sensing Doppler shifts in
the electromagnetic returns from objects, thereby allowing us
to detect vibrations [2].

The target vibration can be estimated through successive
chirp-rate estimations using the discrete fractional Fourier
transform (DFrFT), which is inherently geared toward chirp-
rate estimation[3], [4], [5], [6], [7]. Later on, a subspace
method was incorporated into the DFrFT-based method and
it provides better performance than the direct DFrFT-based
method in noise [8], [9].
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In real-world applications, clutter prevents the DFrFT-based
vibration estimation method from yielding reliable results.
The performance of the DFrFT-based vibration estimation
method is left un-investigated. In this paper, we investigate and
compare the performance of both the DFrFT-based method and
the subspace method in simulated Gamma-distributed clutter
signals. Simulation results demonstrate that the DFrFT-based
method yields reliable results with signal-to-clutter ratios
(SCRs) > 18 dB and the subspace method yields reliable
results with SCRs > 8 dB. Experimental results demonstrate
that the subspace method correctly estimates the vibration
frequency of a 7 Hz vibration from actual SAR data with
an estimated SCR of 14 dB.

II. THEORY

A. Signal Model

In synthetic aperture radar (SAR), low-level target vibra-
tions can be estimated by estimating the instantaneous vibra-
tion displacements (in range), ∆x, from [4]

s[n] ≈ σ exp [−j (kyyn+ kv∆x[n] + φ)] + c[n] +w[n], (1)

where y and σ are the cross-range position and the reflectivity
of the vibrating target, respectively. We define s[n] as the
signal of interest (SoI). The noise, denoted by w[n], is assumed
to be white and Gaussian. The scaling parameters (ky, kv) are
known. Signals from other static targets at the same range
locations are all represented by c[n] and

c[n] =
∑
i

σi exp [−j (kyyin+ φi)]. (2)

Conventionally c[n] is referred to as the “clutter signal” or
simply “clutter”. The signal-to-clutter ratio (SCR) is defined
as

SCR = 20 log
|σv|
|σc|

, (3)

where σv is the reflectance of the vibrating target and σc is
the average reflectance of 1 m2 of clutter. We assume that the
reflectance of the clutter pixel is Gamma-distributed with the
shape parameter kgam = σc. A circle-shaped averaging filter
with radius of 1 meter is applied to the clutter to simulate
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the correlations in neighbor pixels. The SNR is defined with
respect to the SoI as

SNR = 10 log
Es

Ew
, (4)

where Es is the energy of the signal (including both vibrating
targets and clutter) and Ew is the energy of the noise.

B. Methods

1) The DFrFT-based method: The DFrFT-based vibration
estimation method is directly applied to the SoI in (1).
The SoI is first approximated by chirp signals in successive
small time windows (also called sub-apertures). In each sub-
aperture the chirp rate of the signal is linearly proportional
to the instantaneous vibration acceleration. Then, the DFrFT
is applied to the signals in each sub-aperture to estimate
their chirp rates in sliding time windows. As a result, the
instantaneous vibration accelerations are estimated and the
vibration frequencies are estimated from the spectrum of
estimated instantaneous accelerations. The reader may refer
to [4] for more details.

2) The subspace method: In the subspace method, the chirp
rate is estimated after separating the signal into the signal
subspace and the noise subspace [8]. It first takes the discrete
Fourier transform (DFT) of the row projection of the DFrFT
spectrum (with respect to the chirp rate) to obtain a vector
such as

xcr[r] = DFT−1

(N−1∑
k=0

|Xk[r]|p
)1/p

, (5)

where Xk[r] is the DFRFT spectrum of the SoI. The covari-
ance matrices Rcr for xcr[r] is estimated in order to use
the subspace methods to estimate the chirp rate. Virtually
the covariance matrix is estimated from noisy observations
using sample covariance matrix. Biased covariance estimates
are preferred over unbiased estimates for obtaining positive
definite matrix [10]. Eigenvalue decomposition of the covari-
ance matrix yields the desired pseudo-subspace decomposition
as

Rcr = VcrsΛcrsV
T
crs + VcrnΛcrnVT

crn, (6)

where the subscripts s and n denote the signal and noise
subspaces, respectively. Unlike the case of sinusoids in noise,
the signal and noise subspaces in this case do not completely
separate [11], [12]. Subspace methods such as multiple sig-
nal classification (MUSIC), minimum-norm and minimum-
variance can be applied to the covariance matrices to estimate
the chirp rate of the signal [9]. Results in [9] shows that
in general the minimum-norm method in combination of
the 3-norm has better performance than the MUSIC-based
methods. However, in the problem of vibration estimation,
the vibration-induced chirp rates are very small. In this case,
the MUSIC/root-MUSIC algorithm in combination with the
1-norm yields more reliable estimate then the minimum-norm
method. As such, we use MUSIC/root-MUSIC algorithm to
estimate the vibration accelerations.

III. SIMULATIONS AND PERFORMANCE ANALYSIS

We analyze the performance of both the DFrFT-based
method and the subspace method in clutter by means of
simulation. An airborne spotlight-mode SAR working in the
Ku band is simulated and its nominal resolution is 0.33 m
in both directions. In the simulation, the SNR is fixed at
30 dB. Simulation results demonstrate that the direct DFrFT-
based method, in general, yields reliable vibration spectra with
SCRs > 18 dB. The subspace method, on the other hand,
generally yields reliable vibration spectra with SCRs > 8
dB. The estimated accelerations and vibration spectra of a
1-mm, 5-Hz vibration using both the DFrFT-based method
and the subspace method with SCR = 15 dB are shown in
Figs. 1-4. The subspace method successfully estimates the 5-
Hz vibration frequency while the DFrFT-based method fails
to do so according to the estimated vibration spectra shown
in Fig. 3 and Fig. 4.
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Fig. 1: Estimated accelerations of a 5 Hz vibration with an
amplitude of 1 mm by using the direct DFrFT-based method
with SCR = 15 dB.

IV. EXPERIMENTAL RESULTS

An experiment was conducted in collaboration with General
Atomics Aeronautics Systems, Inc (GA-ASI) to investigate the
performance of both the DFrFT-based method and the sub-
space method in actual SAR data. The Lynx SAR system was
used to reconstruct the SAR image [13]. In this experiment,
the vibrating target is an aluminum triangular trihedral with
lateral length of 12 inches, as shown in Fig. 5. The vibration in
this experiment were induced by the rotation of an unbalanced
mass that was driven by a fan. The vibration’s actual amplitude
and frequency were 0.5 mm and 7 Hz, respectively. A SAR
image containing the vibrating target reconstructed by the
Lynx SAR system is shown in Fig. 6. The vibrating target is
at the bottom right portion of the image. Several ghost targets
appear along the azimuth direction. The nominal resolution of
the reconstructed SAR image is 0.3 m in each direction. The
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Fig. 2: Estimated accelerations of a 5 Hz vibration with an
amplitude of 1 mm by using the subspace method with SCR
= 15 dB.
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Fig. 3: Estimated vibration spectrum of a 5 Hz vibration with
an amplitude of 1 mm by using the DFrFT-based method with
SCR = 15 dB.

SCR is estimated to be 14 dB and the SNR is estimated to
be above 15 dB. In this experiment, the carrier frequency was
15 GHz and the PRF was 230 Hz. Due to limited SNR and
SCR, we selected the total observation time of this target to
be 1.2 s, centered at the time closest to target broadside. The
length of each time window was chosen to be 0.1 s.

The estimated vibration accelerations of both the DFrFT-
based method and the subspace method are shown in Fig. 7
and Fig. 9, respectively. The estimated vibration spectra of
both the DFrFT-based method and the subspace method are
shown in Fig. 8 and Fig. 10, respectively. For the DFrFT-
based method, the estimated vibration accelerations appear to
be noisy so that we cannot identify the 7 Hz vibration from its
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Fig. 4: Estimated vibration spectrum of a 5 Hz vibration with
an amplitude of 1 mm by using the subspace method with
SCR = 15 dB.

spectrum. The vibration spectrum estimated by the subspace
method clearly shows that the vibration is at 7 Hz.

Fig. 5: Vibrating target in a machine shop. It is an aluminum
triangular trihedral with lateral length of 12 inches and it
vibrates at 7 Hz with an amplitude of 0.5 mm.
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Fig. 6: SAR image containing the vibrating target. The vibra-
tion target appears as a strip of white line in the bottom right
portion of the image . There are a few static targets above the
vibration target which are not part of the vibration-estimation
experiment.
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Fig. 7: Estimated spectrum of a 7 Hz vibration with an
amplitude of 0.5 mm by using the direct DFrFT-based method
with SCR = 14 dB.

V. CONCLUSIONS

In this paper, the performance of both the DFrFT-based
method and the subspace method in clutter signals is inves-
tigated. Simulation results demonstrate that the DFrFT-based
method yields reliable results with SCRs > 18 dB and the
subspace method yields reliable results with SCRs > 8 dB.
Experimental results demonstrate that the subspace method
correctly estimates the vibration frequency of a 7 Hz vibration
from actual SAR data with an estimated SCR of 14 dB.
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Fig. 8: Estimated vibration spectrum of a 7 Hz vibration with
an amplitude of 0.5 mm by using the direct DFrFT-based
method with SCR = 14 dB.
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Fig. 9: Estimated accelerations of a 7 Hz vibration with an
amplitude of 0.5 mm by using the subspace method with SCR
= 14 dB.
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Fig. 10: Estimated vibration spectrum of a 7 Hz vibration with
an amplitude of 0.5 mm by using the subspace method with
SCR = 14 dB.
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