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Abstract—It is well known that purely sinusoidal signals satisfy
a linear second-order constant coefficient differential equation.
It is also well known that a broad class of orthogonal special
functions such as the Legendre and Hermite polynomials satisfy
the second-order Sturm-Liouville differential equation. Both
sinusoidal and AM–FM models have been used for analysis and
synthesis of speech signals. In this paper, we present a Sturm-
Liouville differential and difference equation approach to both
continuous and discrete time frequency modulation. Orthogonal
modes of frequency modulation that are not distorted by the
Sturm-Liouville operator are described.
Keywords: Frequency modulation, eigenvectors, Sturm-

Liouville differential or difference equation, generalized

Fourier series.

I. INTRODUCTION

Sinusoidal signals have a special connection with LTI sys-

tems in that they are eigenfunctions of a LTI system operator

and form the basis for LTI system theory:

L(exp (jωot)) = H(jωo) exp (jωot),

where H(jωo) represents the complex eigenvalue or gain.

A sinusoidal signal of the form:

x(t) = cos(ωot + θo).

further satisfies the constant coefficient, homogenous, second-

order differential equation of the classical harmonic oscillator:

ẍ + ω2
ox = 0.

Now consider a frequency modulated version of the sinusoidal

signal of the form:

x(t) = cos(φ(t)) = cos
(∫ t

−∞
ωi(τ)dτ

)
,

where ωi(t) is the instantaneous frequency and φi(t) is the

instantaneous phase. This signal satisfies a second-order dif-

ferential equation with time-varying coefficients of the form:

ẍ − ω̇i(t)
ωi(t)

ẋ + ω2
i (t)x =

(
D2 − Dωi

ωi
D + ω2

i

)
x = 0, (1)

where D denotes the derivative operator. It is known that

even in the simple case, where the message waveform is
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sinusoidal, the bandwidth of the FM signal is infinite and

requires truncation1.

The energy separation algorithm (ESA) and its discrete

version DESA were studied in [5] as a methodology for the

demodulation of AM–FM signals. In [4], it was shown that

AM–FM signals can only be approximate eigenfunctions of

LTI systems and consequently they will undergo harmonic

distortion when they are subjected to LTI filtering. Constraints

on the frequency response of a filter for minimizing the error

induced by the eigenfunction approximation and bounds on

the demodulation error for AM–FM signals were developed.

However, when these constraints are not met, the eigenfunction

approximation incurs significant demodulation error. Orthog-

onal FM functions derived from simple permutations of the

phase of the conventional DFT were investigated in [6] in the

context of energy compaction.

In this paper, the goal is to develop and analyze a Sturm–
Liouville (S-L) [9] framework for both continuous and dis-

crete frequency modulation. This is accomplished by studying

the generating differential or difference equation underlying

the frequency modulated signal [11]. Orthogonal modes of

frequency modulation that are not subject to distortion from

the underlying S-L operator are described and are used to

define a generalized Fourier series framework applicable to

the processing of frequency modulated signals.

II. CONTINUOUS TIME FM

The FM differential equation described in Eq. (1) does not

correspond to a self-adjoint operator. The self-adjoint form of

the FM differential equation is [1]:

D
(

1
ωi(t)

Dx(t)
)

+ ωi(t)x(t) = 0

The self-adjoint form of the FM differential equation for the

FM signal x(t) = cos(nφ(t)) is given by:(
1
ωi

D2 − Dωi

ω2
i

D
)

x = −n2ωix, H(ωi)x = −n2ωix. (2)

Comparing this to the general differential form of the S-L

differential equation:

D (p(x)D(y(x))) + q(x)y(x) = λw(x)y(x),

1Carson bandwidth of an FM signal retains just spectral components that
have an amplitude of at least 10% of the maximum spectral amplitude
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Fig. 1. Discrete S-L problem, sinusoidal-FM :(a) sinusoidal FM signal, (b) selected eigenvectors of the discrete S-L operator depicting different number of
zero crossings, (c) IF of selected eigenvectors extracted using the ESA [5], and (d) weighting function of the discrete S-L problem,

where λ is the eigenvalue and w(x) is the weight function we

can see that Eq. (2) is a specific case of the S-L problem with

λn = −n2, p(t) =
1

ωi(t)
, q(t) = 0

and weight function2 w(t) = wi(t). Eq. (2) can in turn

be formulated as a S-L system with periodicity by periodic

extension of the instantaneous frequency ωi(t) or it can be

treated as a S-L extrapolation problem, where this can be

accomplished by repeating the values of the instantaneous

frequency at the boundaries3. This S-L framework implies that

the operator H has real and positive eigenvalues and a full set

of orthogonal eigenfunctions ψn(t) with respect to the weight

function ωi(t):

< ψm(t), ψn(t) > =
∫ ∞

−∞
wi(t)ψm(t)ψn(t)dt

= 0, m �= n. (3)

This result is consistent with earlier work on FAM-lets [3],

where the sequence of functions:

γn(t) =
√

ωi(t) cos (nφ(t))

ζn(t) =
√

ωi(t) sin (nφ(t)) , (4)

2For the S-L framework to hold the weight function ωi(t) should be strictly
positive

3The instantaneous frequency, ωi(t), is assumed to be slow time-varying.

were shown to be an orthogonal sequence of functions with

both amplitude and frequency modulation4. It is also well

known that many of the special functions encountered in

quantum mechanics such as Legendre or Hermite functions

satisfy the S-L framework for specific discrete values of the

eigenvalue λ and the weight function w(x) [2], [9].

Our goal is to develop a framework for discretisation of

this differential operator H so that the eigenvectors of the

resultant discrete system are discrete approximations to the

FM differential equation. We accomplish this by expressing

the operator in the form:

H(ωi) = D
(

1
ωi

D
)

. (5)

There are two important consequences of expressing the FM

differential equation in the S-L form. The first implication

is that if the FM signal x(t) is input to the system H(ωi),
then the output is just a scalar multiple of the input signal.

In other words, the system does not introduce any frequency

distortion and that instantaneous frequency of the input signal

4The distinguishing characteristic of FAM-lets is that the ratio of their
center-frequency to the bandwidth is a constant
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Fig. 2. Discrete S-L problem, triangular frequency modulation : (a) FM signal, (b) selected eigenvectors of the discrete S-L operator, (c,d) instantaneous
frequency and envelope estimates of eigenvectors k = 124 : 131 of the discrete S-L operator using the DESA, (e) weight function associated with the discrete
S-L operator.

x(t) remains invariant:

H
( ∞∑

k=0

a[k] cos(kφ(t))

)
=

∞∑
k=0

a[k]H(cos(kφ(t)))

= ωi(t)
∞∑

k=0

−k2a[k]︸ ︷︷ ︸
b[k]

cos(kφ(t)). (6)

The second implication is that results analogous to LTI systems

and sinusoids such as a Fourier series of FM modulated

waveforms can be developed for modulated signals with

ψk(t) = cos(kφ(t)):

x(t) =
∞∑

k=0

c[k]ψk(t)

c[k] =

∫ ∞

−∞
x(t)ψk(t)ωi(t)dt∫ ∞

−∞
|ψk(t)|2ωi(t)dt

(7)

III. DISCRETE TIME FM

One approach to generating a S-L framework for discrete

time FM is to work directly with the difference equation

satisfied by the signal. First consider the sinusoidal sequence

s[n] = cos(Ωon) which satisfies the second-order difference

equation:

s[n] − 2 cos (Ωo) s[n − 1] + s[n − 2] = 0.

Now consider the discrete time FM sequence x[n] given by:

x[n] = cos(Θ[n]) = cos
(∫ n

o

Ωi[m]dm + θo

)
,

where the instantaneous phase Θ[n] is modeled as a first

difference:

Θ[n] = Θ[n − 1] + Ωi[n].

It is easily seen that this satisfies a second-order generating

difference equation of the form [8]:

x[n] − c1[n]x[n − 1] + c2[n]x[n − 2] = 0,

where the time-varying coefficients are given by:

c1[n] =
sin (Ωi[n] + Ωi[n − 1])

sin (Ωi[n − 1])

c2[n] =
sin(Ωi[n])

sin(Ωi[n − 1])
. (8)

It can also be verified that this difference equation will reduce

to that of the sinusoid in the stationary case, i.e., Ωi[n] = Ωo.

The corresponding self-adjoint difference equation obtained
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Fig. 3. Center frequency and frequency deviation of selected FM modes of the discrete S-L operator for the first sinusoidally modulated example.

by the S-L difference equation framework described in [7] is

given by:

∇− (p[n]Δ+(x[n])) + w[n]C[n]x[n] = 0, (9)

where the weight function w[n], p[n], and C[n] are given by:

w[n] =
n−1∏
r=0

sin(Ωi[r])
sin(Ωi[r + 2])

=
sin(Ωi[0]) sin(Ωi[1])

sin(Ωi[n]) sin(Ωi[n + 1])

p[n] = sin (Ωi[n]) w[n] =
sin(Ωi[0]) sin(Ωi[1])

sin(Ωi[n + 1])
C[n] = sin(Ωi[n]) + sin(Ωi[n + 1])

− sin(Ωi[n + 1] + Ωi[n]) (10)

and the symbols ∇− and Δ+ denote the one-sample backward

and forward difference operators. It should be noted here that

the form of the FM difference equation and as a result the

self-adjoint S-L difference equation are sensitive to the form

of discretization of the instantaneous phase Θ[n]. As in the

continuous case, the difference equation in Eq. (9) can be

formulated as a periodic S-L system by either extrapolation ot

periodic extension of the instantaneous frequency Ωi[n] at the

boundaries [2], [10]. The solution to the discrete S-L system

is then formulated as the solution to a weighted, tridiagonal

eigenvalue problem of the form:

L(x) = λWx, (11)

where W = diag(w[0], . . . , w[N −1]) is a diagonal matrix of

the positive weights and λ is the eigenvalue5. Furthermore, as

in the continuous case, the eigenvectors of the S-L operator:

L(p[n]) = ∇−p[n]Δ+ + w[n]C[n]

corresponding to distinct eigenvalues are orthogonal with

respect to the positive weight function w[n]:

< vp[n], vq[n] > =
N−1∑
n=0

w[n]vp[n]vq[n] = 0, p �= q. (12)

5For situations where the signal of interest and the estimate of the IF, Ωi[n],
are noisy, a generalized SVD version of Eq. (11) is employed

The corresponding expansion of the discrete FM signal in

terms of the eigenvectors vk[n] of the S-L operator is:

x[n] =
N−1∑
k=0

c[k]vk[n],

c[k] =

N−1∑
n=0

w[n]x[n]vk[n]

N−1∑
n=0

w[n]|vk[n]|2
(13)

These eigenvectors contain both amplitude and frequency

modulation and the IF of the eigenvectors of the matrix L
furthermore have a form specified by the original IF, ωi[n]:

vk[n] = ak[n] cos
( π

N
nk + φk[n]

)
Fig. (1), fig. (2), and fig. (4) describe the application of the

discrete S-L approach to a monocomponent: (a) sinusoidally

modulated FM signal, (b) FM signal with a triangular IF,

and (c) FM signal with a triangular IF in noise. Note that

the eigenvectors corresponding to smaller eigenvalues have

instantaneous frequencies in the high frequency range, while

the ones corresponding to the larger eigenvalues have IF’s in

the low-frequency range as depicted in Fig. (3)(a). Also note

that the frequency deviation of the IF’s of the eigenvectors is

symmetric about a central mode as depicted in Fig. (3)(b).

Orthogonality and the self-adjoint form of the operator L
have specific implications in terms of signal processing of the

frequency modulated eigenvector: (a) the eigenvalues of L are

both real and positive and can be put into an ascending order,

where the lower eigenvalues correspond to IF’s of modes with

more zero-crossings and the higher eigenvalues correspond

to IF’s at low frequency or fewer zero-crossings, (b) the

eigenvectors of L will not be subject to distortion of the IF

by the system L, which is in direct contrast to the AM–

FM demodulation algorithms using the quasi-eigenfunction

approximation and incur significant error, (c) polynomial com-

positions of the FM system operator L can be used to process

the eigenvectors in a manner analogous to digital filter design.
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Fig. 4. FM orthogonal mode decomposition in noise using the generalized SVD version of Eq. (11): (a) noisy FM signal with SNR = 25 dB, (b,c) ESA IF
and envelope estimates of selected eigenvectors, where the dashed line represents the ESA-IF estimate of the FM signal in part (a), (d) corresponding discrete
S-L weight function, and (e) ESA estimate after FM mode rejection below a threshold of -23.8 dB.
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