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Abstract- The performance of existing multiuser de-
tectors is dependent on available information about the
structure of multiple access interference (MAI). The
decorrelating detector requires complete knowledge of
MAI. The minimum output energy (MOE) detector
is a semiblind approach which exploits the informa-
tion about the desired user only. The performance of
MOE detector is suboptimal compared to that of the
decorrelator. The proposed approach is a semiblind
code constrained-independent component analysis (CC-
ICA) based approach that exploits the prior information
about the signature code of the desired user to constrain
the ICA vector to lie in the orthogonal complement
of the interfering users data. Simulation results indi-
cate that the performance of the proposed approach ap-
proaches that of the decorrelator using much less prior
information.

1. INTRODUCTION

MAI constitutes a significant bottleneck in achieving the
envisaged capacity of acode division multiple access
(CDMA) system. Inadequacy of the conventional detector
to deal with MAI has motivated the development of op-
timum multiuser detector [1] and its suboptimal counter-
parts [2], [3], [4]. The drawback of the above detectors are
that they either require complete knowledge of the MAI [2]
or training data [3] or the decision delay is too large [4].
To overcome these limitations, a class of spectrally efficient
blind detectors based on constrained minimum output en-
ergy and subspace concepts are proposed in [5] [6] [7]. Sub-
space methods are gaining popularity due to their minimal
side information requirement and increase in available com-
putational capabilities. It can be shown that both the decor-
relating detector and the MMSE/MOE detectors can be put
into a blind approach framework using subspace concepts.
Subspace methods usually identify the signal subspace by
projecting the received data onto an orthogonal basis vectors
spanning the signal subspace obtained from the data covari-
ance matrix based on the widely used statistical technique

principal component analysis(PCA). Independent compo-
nent analysis(ICA), an extension of PCA, is a recent tech-
nique [8] that assumes source independence and tries to re-
store this attribute. The source independence assumption
could very well be justified in most multiuser communica-
tion scenarios. Traditionally the ICA has been used in blind
source separation problems i.e., thecocktail partyproblem
for speech processing. The main goal here is to separate
the signals. i.e. distinguish between the different speakers.
In these applications, there is an inherent ambiguity up to
a scaling and permutation. Permutation ambiguity refers to
the order of the speakers i.e. which speaker’s voice comes
first. The scaling ambiguity refers to the case where the
separated sources differ from the original sources by a scal-
ing factor, this scaling ambiguity can be tolerated in places
where most of the information conveyed is centered in the
shape of the waveform rather than it’s amplitude [9]. The
structure of the CDMA channel where all the users transmit
their data without any temporal or spectral separation im-
mediately poses a similarity to the cocktail party problem
and prompts the use of ICA in this scenario, however the
nature of the problem in communication applications does
not allow for the scaling and permutation ambiguity. Re-
cently an adaptive receiver based on the ICA concept has
been introduced in [10], however due to the ill-posed nature
of the problem [11], the ICA part has been incorporated as
an add on to the existing MMSE or rake receiver. Efforts
towards eliminating the indeterminacy problems have re-
cently been reported in [12], where this indeterminacy is
eliminated on the basis of prior knowledge about the source
kurtosis. In this paper, we assume the knowledge of the sig-
nature code of the desired user and present an algorithm to
remove the indeterminacy in ICA solution by imposing a
norm constraint and constraining the ICA solution to lie in
the orthogonal complement of the interfering users data.

2. SYSTEM MODEL

A CDMA channel is characterized by the fact that there is
no separation between the users either in the frequency do-



main or in the time domain. The signal received at the re-
ceiver in continuous time domain can be represented as

y(t) =
K∑

k=1

+∞∑

i=−∞
Akbk(i)sk(t− iTs − τk) + σn(t), (1)

where we have used the following notation:Ts is the inverse
of the data rate or the symbol time interval,sk(t) is the de-
terministic signature waveform assigned to thekthuser in
the channel,Ak is the received amplitude of thekthuser’s
signal andA2

k is referred to as the energy of thekthuser,
bk(i) ∈ [-1, +1] is the ithdata symbol transmitted by the
kthuser, n(t) is additive white Gaussian noise with unit
power spectral density,σ2 is the noise power spectral den-
sity, τk is the delay introduced for thekth user. In the above
system model it is assumed that the data symbols are in-
dependent, identically distributed (i.i.d.) random variables.
The signature waveform has the form

sk(t) =
N−1∑
n=0

ck(n)pk(t− nTc), (2)

whereN is the number of chips per symbol,Tc = Ts

N is the
chip interval,ck(n) is thenthchip in the spreading sequence
of the kthuser,pk(t) is the chip waveform of thekthuser,
received at the receiver end, filtered by the transmitter, re-
ceiver and the channel. Considering a symbol synchronous
system, i.e.τ1 = τ2 = ... = τK = 0, chip matched filter-
ing and sampling the received signal at the chip rateN/Ts,
we have a lengthN vector as the received data vectory.
The matrix formulation of the composite signal in AWGN
channel for a given signaling intervali is given as

y(i) = SAb(i) + n(i), (3)

where : S = [s1, s2, ..., sK] is a KxK matrix of cor-
related user signature codes.A = diag[A1, A2, ..., AK ]
is diagonal matrix of user amplitudes andb(i) =
[b1(i), b2(i), ..., bK(i)]T is aK dimensional vector of user
data at timet = i. By hypothesis all the source cumulants
are diagonal, in particular the two point correlation between
the user symbols at the same time is given as

K0
i,j ≡ 〈bi(t)bj(t)〉 = δi,jK

0
i (4)

whereδi,j is the Kronecker delta and〈z1, z2, ..., zk〉 denotes
the cumulant of thek random variablesz1, z2, ..., zk. With-
out loss of generality, one can always assume that all the
sources have zero means

〈bk〉 = 0, k = 1, ..., K

If this is not the case, one has to estimated the mean val-
ues of each of the input and subtract it from that input. It is
shown in [13] that an asynchronous CDMA system withK

users can be thought of a single user system subject to ISI,
where each bit of a user overlaps with(K − 1) to (2K − 1)
interfering bits depending on the relative delay between the
users. In the remaining sections, we will assume that user
1 is the desired user and the receiver has the perfect knowl-
edge of the desired user’s signature code and it’s timing.

3. ICA BASED MULTIUSER DETECTOR

ICA of a random vector consists of searching for a linear
transformation that minimizes the statistical dependence be-
tween its components and could be implemented by using
both neural as well as statistical algorithms. One of early
formulations of the ICA [8] is based on the concept of mu-
tual information in which the expansion of mutual infor-
mation is utilized as a function of cumulants of increasing
order. Mutual information between a random vectorx and
y, which are derived from a distributionspx(x) andpy(y) is
given as

I(x;y) =
∑

x

∑
y

px,y(x, y) log
px,y(x, y)

px(x)py(y)
, (5)

It is however noted in the above equation that the mu-
tual information is infact therelative entropy[14] between
the joint distributionpx,y(x, y) and the product distribution
px(x)py(y). In another notation the relative entropy is de-
fined as theKullback-Leiblerdistance between the distribu-
tionspx(x) andpy(y) and is denoted as

D (px,y(x, y)||px(x)py(y)) ,

In our case, where the goal is to compute ICA on a given
random vector, we rephrase the above definitions to ob-
tain the mutual information as the relative entropy between
the density of random vectorx and the density assuming
component-wise independence ofx. This gives us the fol-
lowing expression for the mutual information

I(x) = D

(
px(x)||

i=N∏

i=1

px(xi)

)
, (6)

Most of the ICA algorithms try to minimize the above mu-
tual information in order to compute the independent com-
ponents. This usually consists of finding aKxN demixing
matrix/linear transformation matrixW, which when multi-
plied by the random vector yields independent components.
W is found by minimizing/maximizing some appropriately
defined cost function, typically based on a measure of mu-
tual information. Most of the ICA algorithms have a pre-
processing stage, where the data is whitened to yield un-
correlated components, this preprocessing step reduces the
problem of findingW to finding an orthogonal (unitary)



matrixQ, that rotates the signal constellation to yield inde-
pendent components from uncorrelated components. It is to
be noted that the whitening matrix can be obtained from the
second order statistics of the received signal, whereas the
computation of orthogonal matrix, usually employs higher
order statistics such as higher order (> 2) cumulants, this
fact was first brought up by Comon [8] and Cardoso [15].
In ICA, a typical signal generating model is

y = S̃b̃, (7)

In the present case (refer to eq.3) we haveS̃ = SA as the
memorylessmixing matrixand the noise componentn can
be incorporated in the model of (7) as added source compo-
nents. A multi-user detector can be formulated by extracting
all the independent components at once, this is particularly
useful in a CDMA uplink scenario where it is reasonable to
assume that the base station has information about all the
active users in the channel, however in a CDMA downlink
scenario, where the emphasis is on the extraction of a single
desired user, we are interested in obtaining one row of the
matrix W. To computeW or Q variety of cost functions
or contrast functions have been proposed in the literature.
There have been many information theoretic approaches to-
wards the computation of the ICA, for a comprehensive re-
view see [16], a quick summary of various ICA algorithms
can also be found in [17]. Specifically, for the purposes of
this paper, we implement the CC-ICA detector based on a
modified version of Hyv̈arinen’s fixed point algorithm pro-
posed in [18]. The cost function takes form of a generalized
version of the cumulant based cost function proposed by
Comon in [8], which is also considered in [18].

JG(w) = [E{G(wTx)} −E{G(ν)}]2, (8)

whereJG(w) is the cost function we are interested in op-
timizing, w is a N -dimensional vector constrained so that
E{(wT x)2} = 1, ν is a Gaussian variable of zero mean and
unit variance.G in this paper is taken as

G(u) =
1
4
u4

g(u) = u3, (9)

whereg(.) is the derivative ofG(.). We follow the “sequen-
tial” approach using the nonlinearityG(.) in (9) to compute
the ICA. This sequential scheme is also called as thedefla-
tion approach. The same concept is extended to the mul-
tiuser detection case, where we need to separate out more
than one sources simultaneously, namely the “symmetric”
approach. Following the sequential approach, minimization
of the cost function in (8), will extract the data from one
user, but there is no control onto which user’s data is be-
ing extracted. The above stated limitation constitutes a ma-
jor hurdle for the application of ICA based approaches in
communication applications. The removal of thisinherent
ambiguityis precisely the goal of this paper.
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Fig. 1. Performance comparison of the proposed ICA based
detector to that of MOE and decorrelating detector. Number
of users in the channel is 2 and perfect power control is
assumed. Correlation between the users isρ = 0.4.

4. CODE-CONSTRAINED ICA RECEIVER

The minimization of the cost function listed in (8), for de-
flation approach yields aNx1 vectorw, such that

xi = wT y = sj where i 6= j, (10)

It is to be noted in the above equation that there is no control
over which user is extracted. We would like to extract the
user of interest given the knowledge of the spreading code
of the desired user. This is achieved by imposing a norm
constraint and constraining the ICA basis vector to lie in the
space orthogonal to the signal space spanned by the inter-
fering users. Let us denote the value of the weight vector
at time instant k aswk, the value of the weight vector at
(k + 1)th time instant is obtained as

wk+1 = Π⊥s1
wk, (11)

The above projection ensures that the ICA weight vector
belong to null space of the interfering users. Clearly, an es-
timate of the interference subspace is required in practice.
We assume that a one-shot estimate of the interference sub-
space is extracted from the sample correlation matrix based
on samples of the received vector with the desired signal
component removed, i.e.,

ỹ = y − s1(sT
1 y) (12)

R̃ =
1

Nin
(ỹỹT )

whereNin is the number of snapshots used in determina-
tion of the interference correlation matrix̃R. This matrix is
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Fig. 2. Performance comparison of the proposed ICA based
detector to that of MOE and decorrelating detector. Number
of users in the channel is 5 and perfect power control is
assumed. Correlation between users is as per Table-I

of rankN − 1 and the most significantK − 1 eigenvectors
constitute the interference subspaceΠs1 . The prewhiten-
ing step is carried out to reduce the problem to the estima-
tion of on orthogonal matrix, thereby reducing some of the
computational overheads. We can further combine the di-
mensionality reduction step with the whitening step to ex-
clude the problem of overfitting, or ‘fitting to the noise’ in
the data. Note that the proposed method requires eigen-
decomposition of the received data to estimate the signal
subspace and the interfering subspace, and for some this
computation is very demanding, as it is. In this regard, we
need to point the attention towards [19], where it is envis-
aged that some day neural processing will make the eigen-
computation a trivial task, that would not only compute the
eigen-structure, but also compute the tasks such as finding
the projection following the estimation of signal subspace
in a single step.

5. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
detector in a multiple user scenario in a synchronous addi-
tive white Gaussian (AWGN) CDMA channel. We consider
the cases when the power control is present and when the
power control is not present. The simulation results are
averaged over 100 monte-carlo experiments. The number
of data points taken in simulations is 1000. The signature
codes of the users are generated by first generating unit en-
ergy Hadamard codes of length 16 and then the desired cor-
relation among them is induced as per Table-I.
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Fig. 3. SINR degradation of Sub-Space MOE detector
due to the increasing condition number. Achievable SINR
decreases as the correlation between the users increases
thereby increasing the probability of error. Number of users
in the channel is 5.

TABLE I

Cross-Correlation of the Interfering Users Code with that
of the Desired User.

User Number Cross-Correlation with User No. 1

1 1.000
2 0.300
3 -0.320
4 0.280
5 0.700

As the first example we take two equal energy user
CDMA channel with correlation ofρ = 0.4 and compare
the performance of the proposed detector with the MOE de-
tector of [5] and decorrelating detector of [2]. It is to be
noted that MOE detector and the proposed CC-ICA detec-
tors are quasi-blind methods in the sense that they do not
have any information about the users except the desired one.
The performance of the MOE detector is inferior to that of
the decorrelating detector due to the fact that it has lesser
prior information available, however the proposed detec-
tor’s performance is close to the decorrelating detector al-
though using the same information as that of the MOE de-
tector, refer to Fig. 1. As a second example, in Fig.2 we take
5 equal energy with the correlation values given in Table-I.
In this case also the performance of the proposed detector is
better than the MOE detector and close to that of decorrelat-
ing detector. Although we note that there is a performance
degradation as compared to two user case due to the highly
correlated nature of the user signature codes. This degrada-
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Fig. 4. Performance comparison of the proposed ICA based
detector to that of MOE and decorrelating detector in ab-
sence of power control. Number of users in the channel is 5
and correlation between them is given in Table-I

tion in the performance could be explained in terms of the
condition numberχ of the interfering user subspace. As the
condition number of the data correlation matrix increases
the achievable signal to interference noise ratio (SINR) de-
creases. Since the probability of error is dependent on the
SINR, the probability of error increases as the SINR de-
creases, see Fig.3. SINR is defined in a CDMA system as

SINR =
(wTs1)2∑

i 6=1 A2
i (wTsi) + σ2wTw

(13)

whereσ2 the noise variance. As a third example, in Fig. 4
we take the case when the interfering users are 10dB above
the desired user’s signal power, we note that we obtain the
similar performance gain over the MOE detector.

6. CONCLUSIONS

In this paper, we have presented an algorithm based on the
code-constrained ICA application in multi-user CDMA sys-
tem to remove the inherent indeterminacy problem in ICA
computations. The indeterminacy in ICA computation is
removed by constraining the CC-ICA detector to lie in the
orthogonal complement of the interfering users data space.
Simulation results indicate that the performance of the pro-
posed detector approaches that of the decorrelating detector
without requiring the complete knowledge of the structure
of MAI. The performance of the proposed detector is better
than that of MOE detector using the same amount of prior
information.
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