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ABSTRACT

Enumerating the number of signal components
present in a superposition of signals is a problem
that finds application in radar systems, multiuser
communication problems, beamforming and array
processing applications. The related problem of
enumerating the number of components present in
a superposition of non-stationary signals is a more
challenging problem because of the nature of the
components that may be well separated in fre-
quency at one instant and overlap at a later in-
stant. In this paper, we apply the Teager-Kaiser
energy operator and higher-order generalizations of
the operator to the problem of non-stationary signal
component enumeration. The singularity of these
instantaneous signal operators is used as a cue to
track the number of components present in a mul-
ticomponent AM-FM signal.

1. INTRODUCTION

The problem of enumerating the number of components
present in a superposition of signals is one that finds ap-
plications in radar systems, where one might be interested
in determining the number of targets [2], in multiple user
communications, where one: is interested in the number of
users [6], in array processing and beamforming applications,
where one is interested in the number of narrowband sources
impinging on a array of antennas [4]. The problem of com-
ponent enumeration becomes even more challenging when
the components are non-stationary.

As noted in [1], the situation is complicated by the fact
that decomposition of a multicomponent signal into its con-
stituent components is a local phenomena, where the com-
ponents could be well separated in the time-frequency plane
at one instant of time and overlap at a later instant of time.
For the components to be well defined, the spread of the
instantaneous frequency (IF) of the components should be
narrow in relation to the instantaneous bandwidth of the
IF of the composite signal [1]. Classical methods for com-
ponent enumeration of stationary signals include the eval-
uation of the rank of a Toeplitz/Hankel matrix of signal
samples [3], which requires a SVD or computation of the
eigenvalues of a observability measure [6]. Detecting abrupt
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changes in the number of components, however, requires al-
gorithms that possess good time resolution characteristics.

The Teager-Kaiser energy operator [9], higher-order en-
ergy operators [8], and related generalizations [10] are ideal
candidates because they possess the desired simplicity, ef-
ficiency, and excellent time resolution. The energy oper-
ator specifically has been used to detect the onset of an
abrupt event such as the presence of a transient in a AM-
FM background [5]. In this paper, we will investigate the
application of the Teager-Kaiser energy operator and its
generalizations to the problem of component enumeration
of nonstationary signals. Specifically we will exploit the
singularity of these instantaneous operators and the GDE
of the composite signal [11] for component enumeration of
multicomponent AM-FM signals.

2. ENERGY DEMODULATION PRIMER

The Teager-Kaiser energy operator is a nonlinear, differ-
ential operator that computes the energy of a signal z(t)

via: . .
Vo(z) = [2(t)]* - 2(t)2(?),
where the dot denotes the time derivative. The discrete—
time energy operator applied to the signal z[n] is defined
via:
U4(z) = z%([n] — z[n + 1z[n - 1].

The energy separation algorithm (ESA) developed in (9] uses
this operator to separate amplitude modulations from fre-
quency modulations to accomplish monocomponent AM-
FM signal demodulation. Discrete versions of the ESA
(DESA’s) [9] and applications of the ESA to the prob-
lems of AM—-FM speech analysis—synthesis, AM-FM vocod-
ing, speech formant frequency and bandwidth tracking have
been investigated in [12].

Higher order generalizations of the energy operator, i.e.,
higher-order energy operators (HOEOQ) for the continuous—
time and the discrete-time case are defined via [8]:

Tk(z)
Tk(a:)

&(t)* D () — z(t)z®(¢)
z[n]z[n + k — 2] — z[n — ljz[n + k& — 1].

These operators for sinusoidal input signals measure the
higher-order energies of a classical harmonic oscillator nor-
malized to half unit mass [7]. The energy demodulation
of Migtures (EDM) algorithm developed in [8] uses these
HOEOQ'’s to accomplish separation and demodulation of two
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component AM-FM signals. For the sake of brevity, we will
adopt the signal model and performance measures described
in [8]. The underlying assumption is that the component
IF/IA signals vary slowly with respect to their carriers.

3. COMPONENT ENUMERATION

3.1. Monocomponent AM-FM Signals

The generating difference equation (GDE) for a monocom-
ponent sinusoidal signal that is invariant to both the am-
plitude and frequency is given by [8, 11]:

Din] = ¥(z[n]) - ¥(z[n - 1]) = 0.

In the case of narrowband AM-FM signals, where the infor-
mation signals are slowly time-varying this relation holds
approximately. The test signal D[n] can therefore be used
to detect the presence of a single component by threshold-
ing the samples of D{n] that are close enough to zero within
a threshold 7, that is dependent of the SNR of the signal
environment, i.e.,

— 1 lD[n” < 7o
Tin] = { 0 otherwise.

Specifically in the case where the signal z[n] is noisy the
test signal D[n] can be smoothed using simple binomial
smoothing to provide robustness. A large proportion of
samples of the decision variable T'[n] being one indicates
that Dn] = 0. The monocomponent detection problem
can then be posed as a binary hypothesis testing problem
of the form:

Hi : 52 po(no)
Ho : »5< po(no)7

where p is the proportion of decision variable values that
is 1 and p, is a threshold that depends on the SNR of the
signal environment. Modelling each of the N samples of
the decision variable, T'[n] as independent trials of a bino-
mial random variable and treating a zero decision variable
sample as a success, for a large N the variable

7 = P—Do
/Pasll\;}’oz

is a standard Gaussian random variable via the central limit
theorem. The hypothesis detection problem can then posed
in terms of a Neyman-Pearson test of the form:

H,
> -
Z < Q (o).

H,

where o is the probability of a false-alarm. Fig. (1) de-
scribes a component enumeration example where the com-
posite signal described in Fig. (1)(a) has two components
present in its first half and just one component present dur-
ing the second half with a SNR of 27 dB. The additional
benefit in energy operator based component enumeration is
that the spikes in the energy operator output can be used to

detect the presence or the onset of an event [5]. The pres-
ence of a energy discontinuity in D[n] indicates the presence
of an event after 500 samples, which in this example is a
change in the number of components. Fig. (1)(b) describes
the test signal D[n] after 5-time binomial smoothing of the
energy signal ¥(z[n]). Fig. (1)(c) describes the decision
variable T'[n] using a threshold of 7, = 0.06. The propor-
tion of ones in the decision variable for this example over
the second half of the signal was 98.6 %, while in the first
half this proportion was 5.0 %.

3.2. Multicomponent Case

For signals that contain more than one component, we will
use the fact that for stationary sinusoids a Hankel matrix of
signal values is of rank 2M when there are M components
in the signal or when the component IF and IA signals
are slowly time-varying [3]. For test signals, we will use
the generalized energy operators obtained via the Toeplitz
determinant approach suggested in [10]. The instantaneous
operators, D,[n] of interest are defined via the determinant
of a Toeplitz matrix of instantaneous signal samples (10].
Specifically the GDE of a M component sinusoidal signal,
that is invariant to the both the frequencies and amplitudes,
in terms of these instantaneous operators is given by:

Daia(z[n]) = 0.

These Toeplitz determinant operators are then computed
for various orders and then the value of the determinant
is then thresholded and the proportion of the zero deter-
minant samples is computed. The number of components
in the signal can then be determined from the model order
for which a significant proportion of determinant samples
is close to zero within a threshold p, that depends on the
SNR. Figure 2 describes a two-component example where
two components are present during both halves but the
component IF’s overlap over the second half. Fig. (2)(c)
describes the performance of the determinant proportion
method for 7, = 0.1, p, = 0.8 for a SNR of 30 dB, MPR of
6 dB.

The singularity of these instantaneous operators will
however, depend on the spectral proximity of the compo-
nents and the relative strengths of the components. The
normalized carrier separation (NCS) parameter described
in [8] is defined as the separation between the component
carrier frequencies normalized by the average Carson band-
width of the components. Physically this parameter mea-
sures the spectral proximity of the components. For NCS,
parameters larger than 1, the components are more or less
spectrally disjoint, although they are not completely sepa-
rated from each other. For NCS parameters lesser than 1,
the components overlap spectrally and component interac-
tion increases. For NCS parameters less than 0.1, we are
in the co-channel signal range and the components are no
longer distinct. As noted in [8], the energy equations in the
EDM algorithm become ill-conditioned as the NCS param-
eter decreases below 1 and finally become singular as the
NCS decreases further. This is a consequence of the fact
that the two component signal starts to resemble a mono-
component signal as the NCS parameter decreases.
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COMPONENT ENUMERATION EXAMPLE, SNR =27 dB

COMPONENT ENUMERATION EXAMPLE, SNR =27d8

COMPOSITE AM-~FM SIGNAL

!
L3

200 800

400 600
TIME SAMPLES

1000

400 600
TIME SAMPLES

1000

n,=0.06, SNR=274dB

DECISION VARIABLE
e o o - =
- R S

©
L)

0

i

800 1000

(0

400 600
TIME SAMPLES

Figure 1: Component enumeration example: (a) composite AM-FM signal, (b) test signal D[n] after 5-time binomial
smoothing, (c) decision variable for monocomponent detection over the two halves of the signal. The first half of the signal
contains two components while the second contains just one component.
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SNR =30 dB, MPR =6 dB, M =2, AM =0 %, CR/IB = 100
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Figure 2: Two—component signal example where both halves of the signal contain 2 components.
component IF’s are well-separated, while in the second half they cross—over.
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Figure 3: Three—component example: (a) composite AM-FM signal, (b) component IF’s, (c) proportion of zero-determinant
samples for various model orders using the Toeplitz-determinant proportion technique with a SNR of 30 dB, 7, = 0.06 and
Do = 0.9.
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M =2, SNR =30 dB, CR1B =100, FM = 1%, AM = [4,8] %
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Figure 4: Effect of NCS and relative component power: (a) proportion of samples where D[n] = 0 for different NCS
parameters with 7, = 0.05, (b) proportion of samples where D[n] = 0 for different relative component amplitudes.

In a similar fashion, the relative power or amplitude ratio
between the components plays a role in singularity. Specif-
ically the interaction between the components of a two-
component AM~FM signal is a maximum when the compo-
nents are of equal magnitude [1]. For larger relative power
ratios, one of the components is stronger than the other
and the components are therefore isolated in terms of their
power. The GDE of a mono-component AM-FM signal
can therefore be used both as a measure of singularity and
as a mono-component detection tool. Figure (4) describes
the proportion of singular samples of a two-component si-
nusoidally modulated AM-FM signal in terms of the NCS
and relative amplitude ratio parameters.

4. SUMMARY AND CONCLUSIONS

A component enumeration algorithm for multicomponent
AM-FM signals that exploits the GDE of the compos-
ite signal and singularities of higher-order generalizations
of the Teager-Kaiser energy operator was presented. The
component enumeration problem was shown to be equiva-
lent to a Neyman-Pearson binary hypothesis testing prob-
lem with respect to the proportion of singular samples of
these higher-order instantaneous operators. Simple bino-
mial smoothing of these operators provides robustness in
the presence of noise.

The advantage of this GDE-singularity-threshold ap-
proach to component enumeration is that it avoids the need
to compute the rank or the eigenvalues of a matrix. Fur-
thermore this approach employs generalizations of the en-
ergy operator that are simple, efficient, and possess excel-
lent time resolution characteristics needed for the tracking
of abrupt changes in a nonstationary signal.
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