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ABSTRACT

Existing approaches to furnishing a basis of eigenvectors for
the discrete Fourier transform (DFT) are based upon defin-
ing tridiagonal operators that commute with the DFT. In
this paper, motivated by ideas from quantum mechanics in
finite dimensions, we define a symmetric matrix that com-
mutes with the centered DFT, thereby furnishing a basis of
eigenvectors for the DFT. We show that these eigenvectors
in the limit converge to Gauss-Hermite (G-H) functions and
that the eigenvalue spectrum of the commutor provides a
very good discrete approximation to that of the continuous
G-H differential operator.
Keywords: Gauss-Hermite functions, eigenvalues, eigen-
vectors, discrete Fourier transform, finite-space quantum
mechanics.

1. INTRODUCTION

The continuous Fourier integral transform of a finite energy
signal is defined via:

X(ω) =
1√
2π

∫ ∞

−∞
x(t) exp (−jωt) dt = F(x(t)).

Gaus–Hermite (G-H) functions defined by:

Hn(t) =
1

π1/4
√

2nn!
hn(t) exp

(
− t2

2

)
,

where hn(t) are the Hermite polynomials, are solutions to
the second-order Hermite differential equation:

d2x

dt2
− (t2 + λ)x(t) = 0.

and eigenfunctions of the Hermite differential operator:

H(x(t)) = (D2 − t2I)x(t) = −(2n + 1)x(t).

with a corresponding eigenvalue of λn = −(2n + 1). They
are also eigenfunctions of the Fourier integral operator:

F(Hn(t)) = exp
(
−jn

π

2

)
Hn(t),

with a corresponding eigenvalue of λn = exp(−jnπ/2).
These G-H functions are also eigenfunctions of the frac-
tional Fourier transform (FRFT) defined via:

Xα(u) =

∫ ∞

−∞
x(t)

∞∑
n=−∞

exp(−jnα)Hn(t)Hn(u)dt.

2. EXISTING APPROACHES

The problem of obtaining a complete orthonormal basis of
eigenvectors for the discrete Fourier transform (DFT) is a
problem that is intrinsic to signal processing [1] and has be-
come the focus of several efforts for defining a discrete ver-
sion of the continuous-time FRFT. Existing approaches for
furnishing a basis for the DFT that resemble discrete ver-
sions of G-H functions are based on defining a tridiagonal
matrix that commutes with the DFT or its centralized ver-
sion. The first approach called the Harper matrix approach
is based on converting the G-H differential equation into a
difference equation by replacing derivatives with finite dif-
ferences [8, 7]. The resulting commuting matrix S referred
to as the Harper matrix has one zero eigenvalue when N is
a multiple of 4. This eigenvalue degeneracy was removed
by resorting to the even and odd parts of the eigenvectors.
The eigenvectors generated by this approach however do not
converge to G-H functions and its eigenvalue spectrum does
not possess the linear spacing needed for being considered
a candidate for the discrete G-H operator.

The second approach outlined by Grunbaum [6] and
later refined by Mugler and Clary [5] is an algebraic method
that derives the general form of a tridiagonal matrix that
commutes with the centered version of the DFT. As recog-
nized by Grunbaum [6] it is this centered DFT formulation
that leads to convergence to G-H functions in the limit.
This approach also produces an orthogonal set of eigen-
vectors for any N . However, the eigenvalue spectrum of
the Grunbaum commuting matrix does not have the lin-
ear spacing of the continuous G-H operator. Consequently
the commuting matrix used in this approach cannot be a
candidate for the discrete G-H operator.

Our goal in this paper is to define a discrete version
of the Hermite-Gauss differential operator H that will fur-
nish the basis for the centered version of the DFT matrix
and simultaneously have eigenvalues and eigenvectors that
very closely resemble those of the continuous G-H oper-
ator. Towards this purpose we utilize concepts borrowed
from quantum mechanics in finite dimensions in the con-
text of the discrete harmonic oscillator [3, 4]. The eigen-
vectors extracted from the proposed commuting matrix are
then used to define a discrete Fractional Fourier Transform
(DFRFT) that has the same abilities to represent multi-
component chirp signals as the Grunbaum approach.
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Figure 1: Eigenvectors and eigenvalues of the Grunbaum commuting matrix approach.

3. DEFINING THE COMMUTING MATRIX

Quantum mechanics in the infinite dimensional setting con-
nects a pair of canonical variables such as position and mo-
mentum through the Fourier integral transform that is a
fourth order involution operation:

F = exp
(
j
π

4

(
p̂2 + q̂2 − 1

))
,

where q̂ and p̂ are the position and momentum operators
that are related through a basis change:

p̂ = F q̂F†, p = −j
d

dq

and p, q denote the eigenvalues of their corresponding op-
erators. In the continuous case the expression inside the
exponential is exactly the G-H differential operator:

q2 + p2 = − d2

dq2
+ q2 = −H(q).

We seek a discrete analog to the operator H. Towards
this purpose we adopt Weyl’s formulation of the discrete
oscillator [3, 4] and define a diagonal matrix Q ∈ RN×N

whose entries are given by:

Qrr = q[r] =

√
2π

N
r, r = − (N − 1)

2
, . . . 0 . . .

(N − 1)

2
.

Then define the centered version of the DFT matrix W as:

{W}mn =
1√
N

exp

(
−j

2π

N
(m − a)(n − a)

)
,

a =
(N − 1)

2
, 0 ≤ m, n ≤ (N − 1).

The matrix P is defined by combining the matrices Q and
W via a basis change as:

P = WQWH

The matrices P and Q can be interpreted as finite dimen-
sional counterparts of the position and momentum opera-
tors and the relation between them and the centered DFT

ensures correspondence with the continuous case where the
position and momentum of the quantum mechanical oscil-
lator are connected by the continuous Fourier integral op-
erator. The matrix that commutes with the CDFT is then
defined as:

T1 = PHP + QHQ. (1)

4. COMMUTATION PROPERTIES

Substituting the expression for P into the definition of the
commutor we have:

T = WQHQWH + QHQ = (QWH)HQWH + QHQ.

To demonstrate that this matrix indeed commutes with the
matrix W we have:

TW = WQHQ + QHQW

WT = WQHQ + W2QHQW

Since q2[r] = q2[−r], 0 ≤ r ≤ (N − 1), the matrix J = W2

has no effect on the matrix QHQ and we have:

W2QHQ = QHQ =⇒ [T,W] = (TW − WT) = 0 (2)

This implies that the commutor defined in Eq. (1) can be
used to furnish the basis of eigenvectors for the centered
DFT. If we now define C1 = [Q,P] and look at the com-
mutator:

[W,C1] = [W,QP − PQ]

= W(QP − PQ) − (QP − PQ)W.

Substituting the expression for P into this expression we
have:

[W,C1] = WQWQWH − W2QW2WQ

− QWQ + WQWHQW

= WQWQWH + WQWHQW

= WQWQWH + WQWW2QW2WH

= 0 (3)
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Figure 2: Decomposition of the commutor: (a) eigenvalues of the commutor T1, (b) eigenvectors of the commutor, (c) com-
parison of the symmetric difference of the eigenvalues of the matrices T1 and T2 for N = 128, (d) eigenvalue spectrum of
the Harper matrix approach.
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Figure 3: Concentrating a chirp: (a) chirp signal with a chirp rate of cr = 0.005 and zero average frequency, (b) MA-
CDFRFT of the chirp signal in (a), (c) cross-section of the MA-CDFRFT through the row containing the peak and the
conventional CDFT.
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where we have used the property that q[−r] = −q[r], i.e.,
W2QW2 = −Q. This in turn implies that C1 and W share
a common basis of eigenvectors. The commutor matrix in
its most general form can therefore be written as:

T2 = c1(P
2 + Q2) + c2C

H
1 C1 + c3I, (4)

where the constants c1, c2, c3 are chosen appropriately to
obtain a matrix with a non-degenerate eigenvalue spectrum
that is as close as possible to that of the G-H operator
H. Figure (2) depicts the eigenvalues of the two commut-
ing matrices T1 and T2 for N = 128 and for c1 = 1,

c2 = −c3 = − π2

N2 . Note that the largest eigenvalue of the
commutor T2 is significantly smaller than that of the T1.
This implies that the effect of the term [Q,P] is to truncate
the eigenvalue spectrum of the commutor at the end. The
eigenvectors of T2 are the same as that of T1 except for a
reordering of the eigenvectors.

5. CONVERGENCE TO THE G-H OPERATOR

Here we show that the commutor matrix T1 defined here
in the continuous limit converges to the Gauss-Hermite op-
erator. This can be demonstrated by looking at:

Pr(x) =

N−1∑
s=0

(N−1)/2∑
m̃=−(N−1)/2

√
2π

N

m̃

N
exp

(
j
2π

N
m̃(r − s)

)
x[s],

To enable the passage to the continuous limit, we define the
following quantities:

q =

√
2π

N
r̃, q̃ =

√
2π

N
s̃, p =

√
2π

N
m̃,

where the tilde expressions correspond to centralized vari-
ables. Consequently we can write the sum as:

lim
N→∞

Prx =

∫ ∞

−∞
dq̃

1

2π

∫ ∞

−∞
p exp (jp(q − q̃)) dpx(q̃)

= −j
d

dq
x(q).

Therefore the commuting matrix in the limit can be written
as:

lim
N→∞

Tx = lim
N→∞

(P2 + Q2)x(q)

= − d2

dq2
x(q) + q2x(q) = −H(x(q))

The commuting matrix T1 in the limit therefore converges
to the G-H differential operator. Grunbaum in his alge-
braic approach has shown that a linear combination of his
commutor and identity converges to the G-H differential
operator. The difference in the proposed approach is that
the eigenvalue spectrum of the proposed commuting matrix
is closer to the linear eigenvalue spectrum of the continu-
ous G-H operator than that of Grunbaum approach or the
Harper matrix approach as can be observed in Fig. (1) and
Fig. (2).

Now that we have defined the symmetric commuting
matrix that shares a basis of eigenvectors with the CDFT

that also serves as a discrete approximation to the G-H op-
erator, we can define a DFRFT based on the set of derived
eigenvectors via:

Aα = W
2α
π = VΛ

2α
π VH ,

where V is the set of eigenvectors extracted from either T1

or T2. An efficient algorithm for computing the multiangle
version of the DFRFT (MA-CDFRFT) for a general eigen-
vector set utilizing the DFT was developed in [2]. The as-
sociated chirp-rate/frequency representation was shown to
be a very useful tool for analysis of multicomponent chirp
signals. The eigenvectors derived from the proposed ap-
proach have the same symmetries as those of the Grunbaum
eigenvectors and also have same ability to concentrate and
represent a chirp as illustrated in Fig. (3).

6. CONCLUSION

In this paper, using ideas inspired from quantum mechanics
in finite dimensions, we have presented a symmetric com-
muting matrix framework that furnishes a full orthogonal
basis of eigenvectors for the centered DFT. We have shown
that this converges to the Gauss-Hermite differential oper-
ator in the limit and have also shown that the eigenvalue
spectrum of commutor very closely resembles that of the
differential operator, a feature not shared by either of the
existing DFRFT approaches. We have also demonstrated
that the associated DFRFT has the same capability of rep-
resenting chirp signals seen in the Grunbaum approach.
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