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A novel Markov-random-field model for speckled synthetic aperture radar (SAR) imagery is derived according
to the physical, spatial statistical properties of speckle noise in coherent imaging. A convex Gibbs energy func-
tion for speckled images is derived and utilized to perform speckle-compensating image estimation. The image
estimation is formed by computing the conditional expectation of the noisy image at each pixel given its neigh-
bors, which is further expressed in terms of the derived Gibbs energy function. The efficacy of the proposed
technique, in terms of reducing speckle noise while preserving spatial resolution, is studied by using both real
and simulated SAR imagery. Using a number of commonly used metrics, the performance of the proposed tech-
nique is shown to surpass that of existing speckle-noise-filtering methods such as the Gamma MAP, the modi-
fied Lee, and the enhanced Frost. © 2006 Optical Society of America
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1. INTRODUCTION

A key advantage of synthetic aperture radar (SAR) over
passive systems for imaging Earth’s surface is that it is
independent of any source that is external to the system
(e.g., sunlight). A SAR system emits its own radiation,
which is typically in the microwave to centimeter-wave
range of the electromagnetic spectrum. Additionally, their
relatively long wavelengths, compared with those of pas-
sive and active optical sensors, make SAR systems ca-
pable of imaging the Earth’s surface regardless of
weather conditions such as dust, cloud cover, and fog.1
Moreover, the usual limitations imposed on the size of a
physical antenna are lifted through the use of a synthetic
aperture, which synthesizes a large antenna by coher-
ently processing the signals received by a moving, smaller
antenna.! This has allowed SAR systems to achieve re-
markably good resolutions. Indeed, although the resolu-
tion depends on the observed target, impressive 4-in.
resolution has been attained with an airborne system
called “Lynx,” designed by Sandia National Laboratories
(SNL) and produced by General Atomic.?

Unfortunately, the efficiency of aerial data collection
and visualization with SAR systems is often impeded by
their high susceptibility to speckle noise. A SAR system
measures both the amplitude and phase of the signals
echoed from the Earth’s surface. However, due to the mi-
croscopic surface roughness of the reflecting objects on the
ground, the amplitudes of the echoed signals reflected
from the locality of each targeted spot have random
phases. The amplitudes of these signals interfere coher-
ently at the antenna, which ultimately gives rise to the
signal-dependent and grainy speckle noise formed in the
SAR imagery.l’g’4

A large variety of speckle-reduction techniques have
been developed and proposed in the literature. Represen-
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tatives of these techniques include the Lee filter and its
derivatives,‘r”6 the geometric ﬁl‘cer,7 the Kuan ﬁlteI‘,S the
Frost filter and its derivatives,ﬁ’9 the Gamma MAP ﬁlter,6
the wavelet approach,w’11 and the approaches based on
Markov random fields (MRFs).1%1? A common assumption
in these approaches is that speckle noise is multiplicative
to the image intensity. 14 This assumption can be useful in
simplifying the complex nature of speckled imagery and
partially capturing the signal-dependent nature of
speckle noise. In actuality, however, speckle noise is nei-
ther multiplicative nor additive to the image
intensity.’>!" Furthermore, speckled imagery does pos-
sess special spatial-correlation characteristics that have
been established in the statistical-optics literature!®1°
but have not been exploited, to the best of our knowledge,
in reducing speckle noise.

In this paper, we introduce a new framework for mod-
eling speckled SAR imagery that is based on MRFs in
conjunction with the physical statistical characteristics of
speckle.l&19 The capability of MRFs to model spatially
correlated and signal-dependent phenomena makes them
an excellent choice for modeling speckled images without
the need to adopt a multiplicative-noise assumption. In
addition, they can lend themselves to many statistical
image-processing strategies that are not predicated on
any multiplicative- or additive-noise assumptions. In par-
ticular, we consider the speckled image as a realization of
the proposed MRF model with high energy, which is a
consequence of the high variability of the pixel intensities
due to the presence of speckle noise. We have embedded
Goodman’s'® joint conditional probability density function
(cpdf) of the speckled intensity of any two points into the
MRF framework, which makes the resulting MRF consis-
tent with the physical attributes of speckled imagery. We
then develop and test a speckle-compensating image esti-
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Fig. 1. (a) Segment of the graph representing the first-order
MRF. (b) Illustration of two types of cliques. (¢) Neighborhood of
the pixel k£ according to the first-order MRF. I;, corresponds to
the k;th pixel value.

mation algorithm, which is a model-based conditional es-
timator of the speckle-free SAR image. Thanks to the
MREF framework, this estimator is conveniently expressed
in terms of the conditional expectation of a pixel given its
neighbors. Indeed, this image estimator reduces the en-
ergy of the speckled image, which, in turn, reduces the
speckle noise. The proposed speckle-reduction approach is
applied to both simulated and real SAR imagery, and the
results are compared with those from existing speckle-
reduction techniques.

2. MODEL

The proposed first-order MRF consists of an undirected
graph G=(V,E) that has undirected edges drawn as lines.
The set of vertices of a segment of the graph, centered at
the kth pixel graph, is given by V={k,ki,kq,k3,k,}, as
shown in Fig. 1(a), and E is the set of edges. From the
graph G, two types of cliques are extracted: the single
clique and the pairwise clique, as depicted in Fig. 1(b). A
single clique C is simply any individual pixel in the im-
age; a pairwise clique C, is a set of any two vertically ad-
jacent or horizontally adjacent pixels. An example of the
neighborhood of a pixel % is shown in Fig. 1(c).

A. Description of the Markov-Random-Field Conditional
Probability Density Function

Goodman®® has derived the cpdf of the intensity Ik at
point k; given the value of the intensity I, at point k In
this Work we have replaced the spatially ‘constant mean
(I, used by Goodman,'® with Oy, which is defined as the
spatially inhomogeneous true 1nfen31ty image at point k;.
If we denote the realization of the random variable [ 3 at
point k; by i Ik then the cpdfis given by
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where Z;(+) is a modified Bessel function of the first kind
and zero order, and | L )| and r,;,. are, respectively, the
coherence factor and the Buclidean’distance between the
points k; and k;. For simplicity, we assume that the coher-
ence factor has the following form (other, more complex
forms can also be considered):

|arkk‘ € [0,1) rkikj$ 1

lu(ry )l = Y . (2)
kit 0 otherwise

Ifry, > 1, then the cpdf in Eq. (1) becomes independent of
Ir, and we obtain plk I, lk |lk pIk (zk) exp(— lk /Ok )/Ok ,
Whlch is the famlllar (negatlve) exponentlal den51ty of the
speckle 1ntens1ty. 8 The correlation in Eq. (2) is assumed
to be limited to 1 unit from the center pixel; the implica-
tions of this assumption are discussed in detail in Subsec-
tion 2.C. This condition can still be met with more general
types of correlation (beyond 1 pixel) by preprocessing the
data. For example, in the case of an image having a larger
correlation, we may apply a spatial-interpolation or down-
sampling scheme and reduce the correlation to the form
given in the above definition.'%2%?!

Note that the Euclidean distances between the pairs of
pixels (ikl’ikz)’ (ik2’ik3)’ (ik3’ik4)’ and (ik4’ik1) are \’2 and
that the distances between the pairs (i,,i,) and (ikl’iks)
are 2. In both cases, the distance is greater than 1 unit.
By using the coherence factor defined in Eq. (2), we can
conclude that these pairs of pixels are conditionally inde-
pendent given the center pixel i,. Thus, with the use of
Bayes rules, the cpdf of the intensity of the center pixel,
i, given the four neighbors iy, iy, ix,, and iy, takes the
following form:

pIk\Ikl,..4,Ik4(ik|ikl, sl
pIk\Ikl(ik|ik1)p1k\1k2(ik|ik2)p1k\1k3(ik|ik3)p1kuk4(ik‘ik )

= . 3
o7 D)7 ®

Recall that each term in Eq. (3) is precisely known from
Eq. (1); therefore, after substitution, we obtain

Pty .ty iy -5tk
: Al
=exp J:El - ln[B(Lk,ij)] - B(ik>ikj)
+In| 7 (C(lk’lkj)> —31n[py (iy)] )
*\ Bliyix) S

where Ay, ip)=|ay,, iy +ip Blig,iy)= (1|, )0, and
Clip,ip)= 2(zkzkj)1/2|a, ' In the actual implémentation
phase of the proposed speckle-reduction algorithm, “O,,”
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which represents the true pixel intensity at index “k,” is
approximated in Eq. (4) by the empirical average of the
observed pixel values over the 3X3 window centered
about the kth pixel. Thus the image created through this
local averaging is used as an initial estimate of the true
intensity.

B. Energy and Potential Functions

Our goal in this subsection is to utilize the cpdf presented
in Subsection 2.A to derive the energy and potential func-
tions of the MRF, which fully characterize the MRF. We
first observe that the cpdf obtained in Eq. (4) admits the
following representation:

plk‘lkl""’lk‘l(ik‘ikl’ s 5ik4) = exp[_ U(ikaik15 s 5ik4)]’

where
UGstrys - 5ir,) = Ve, @) + Ve, (ipsteys - 51k,
Ve, (@) =3 In[py, (3)],
¢ [ Al Clisin)
Ve, @sinys - sln,) = — - ol 57—

2 ! A | Bli) Biy,ix)
+In[B(ip, )] (- (5)
Based on the Hammersley—Clifford theorem,?>?® it is

straightforward to identify the energy function as
UGig,ir,, ---,iz,). Furthermore, by recalling the two types
of cliques that were defined in Section 2, we can associate
the potential functions V¢, (i;) and Ve, (iz,ip,, - .- ,iz,) With
the single clique and the pairwise clique, respectively. The
above energy function, which is easily shown to be convex
by using a convex composition rule,?*? will be utilized in
the speckle-simulation and speckle-reduction processes.

C. Constraints of the Model on Synthetic Aperture
Radar Imagery Data

We will now discuss in depth the implications of the as-
sumption made regarding the coherence factor.

In Subsection 2.A, we assumed that the coherence fac-
tor decays to 0 beyond 1 pixel. If we let N denote the
sample spacing and R the spatial resolution of the SAR
imagery, the aforementioned assumption leads us to the
following constraint: R <2N. On the other hand, the Ny-
quist sampling criterion sets another constraint, given by
N=<R. Therefore the SAR data that will be most suitable
for the proposed model must satisfy the following con-
straint:

1<R/N<2. (6)

At this point, the following question comes in mind: How
practical is the above constraint? Indeed, numerous exist-
ing SAR imaging systems do meet the above criterion, as
seen by the following examples, which makes our as-
sumption about the correlation factor realistic from a
practical standpoint. The real SAR imageries used in this
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work, provided by Sandia National Laboratories (SNL),%¢

have the ratio R/N=1.2. Another SAR system used at
SNL, the “Lynx,” produces SAR images having a ratio
R/N of 1.5 for the earlier system and 1.18 for the most
current one.>?’ Two interferometric SAR systems used by
the Brigham Young University Center for Remote
Sensing® produce SAR imageries with R/N=1. In addi-
tion, the Japanese Earth Resources Satellite (JERS) SAR
system generates SAR images with spatial resolutions of
16 and 14 m along the range and azimuth, respectively;
its sample spacing is 12.5 m in both direction, which
makes the ratio R/N fall between 1.12 and 1.28.%° For the
European Remote Sensing Satellite (ERS) SAR systems,
the ratio R/N is between 1.2 and 2.%° Finally, the Envi-
ronment Canada CV-580 airborne SAR produces SAR im-
ageries having the ratio R/N of 1.25 in the range and 1.38
in the azimuth.?!

3. IMAGE QUALITY ASSESSMENT
PARAMETERS

In this paper, four metrics are used to assess the quality
of the speckle reduction. The first metric is the mean
square error (MSE) between the noise-free (true) I and

the denoised images I, defined by
K

MSE=K'> (I,-1)?,
i=1

where K is the total number of pixels in the image. The
second metric is the so-called 8 parametel‘,lo’32 introduced
by Sattar et al.®? This parameter assesses the quality of
edge preservation; it takes values between 0 and 1, where
1 corresponds to the best possible edge preservation. More
precisely, the B parameter is defined by

Iy - I, Iy - I

B

— >

%mrzﬁrzm&—%&—%

where, for any two images I; and I, F(11,12)=2£111i12i.
The quantities I and I}{ are the high-pass filtered ver-

sions (using the Laplacian operator) of I and 1 , respec-
tively.

The third metric, the signal-to-mean-square-error
ratio'®?33% (SMSE) in dB, is defined by

K 9
DI

SMSE = 10 log;p| —————

I,-1)2|

Finally, the fourth metric is the effective number of looks
(ENL), which is often used in practice to estimate the
speckle-noise level in SAR imagery.s’12’13’15’16’35’36 The
higher this parameter, the lower the speckle noise. What
distinguishes the ENL from the three prior metrics is that
it does not require knowledge of the true image, which is
typically the case when denoising is applied to real SAR
imagery. Thus the ENL is used to assess the speckle-
reduction performance in both simulated and real speck-
led images. The ENL is computed by calculating the mean
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and the variance of the intensity over a uniform area:
(K'S, L)
0 &jcpt
= - —5»
-1 2 -1
K, EieAIi - (Ko EieAIi)

where A represents the set of indices corresponding to a

uniform area in the image I and K, is the number of ele-
ments in A.

Note that the use of different figures of merit for task-
oriented applications (i.e., target detection or pattern rec-
ognition) may be more meaningful than employing the
above metrics. However, since in this paper we do not ad-
dress a specific task, considering metrics that assess the
noise-reduction properties of the processed imagery, such
as those considered in this work, would be appropriate.

4. SIMULATION OF SPECKLED IMAGES

In this section, we utilize the MRF model developed in
Section 2 to simulate speckled images with different tem-
peratures from those of true noise-free images. It is to be
noted that we are not simulating SAR speckled imagery
but rather we are simulating the MRF defined by the
Gibbs energy function (5). The proposed simulation ap-
proach uses the Metropolis-sampler (MS) algorithm37 to
update the pixel intensity of the image. The simulation of
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Fig. 2. Flow chart of the SA method undertaken to simulate
speckled images.
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speckled images can be summarized as follows. The first
step consists in setting the values of two parameters: the
temperature 7y and the coherence factor @, . The tem-
perature T, controls the amount of noise to be'introduced
into the image, and a.,, controls the level of similarity
that a pixel has with its four neighbors.

Once the initialization is done, we proceed to update
the image pixel intensity: For each pixel intensity i, of
the image, a candidate intensity iknew’ other than itself,
is randomly chosen. The candidate pixel is accepted with
probability ~ p=min[1,exp(-AU/T,)],  where AU
=U(iknew,kk1, ,ik4)—U(ik,ikl, ... ,ik4) and U is the energy
function defined in Eq. (5). This procedure is applied to all
pixels of the image, after which the speckled image is re-
turned. A flow chart of the entire simulation algorithm is
shown in Fig. 2.

We will now apply this algorithm to an aerial photo-
graph of a scene, which we called the “true scene.”® Fig-
ures 3(b)-3(f) show the results of the simulations for vary-
ing initial temperatures T)y. It can be seen that the noise
level increases with the temperature, which is accompa-
nied by a decrease in the parameter SMSE, as summa-
rized in Table 1. If the temperature T is set high (e.g.,
>10), the pixel candidates are all accepted, resulting in a
very noisy image [see Fig. 3(f)]. On the other hand, if the
temperature is very low (e.g., =0), most candidate pixels
are rejected, resulting in an almost noise-free image, as
seen in Fig. 3(b).

5. PROPOSED SPECKLE-REDUCTION
APPROACH

At the heart of the proposed speckle-reduction technique
is a novel pixel-by-pixel nonlinear estimator of the true
image. We begin by describing this estimator and exploit
the underlying MRF model to provide a simple means for
computing it. We also establish the denoising capability of
the estimator by showing that the estimated image has a
smaller variance than that of the speckled, raw image. We
subsequently give a description of the proposed speckle-
reduction algorithm that uses the aforementioned nonlin-
ear image estimator.

A. Nonlinear Estimator of the True Image

Given a speckled image I, consider a nonlinear estimator
of O, the kth pixel of the true image O, defined by the
conditional expectation

Op = E[LII \ {I,}], (7)

where I\ {I,} is the set of all pixels in the image excluding
I},. Now, using the Markovian nature of I, we can reduce
the above estimator to

Oy = E[LLI\;], (8)
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(e) (f)

Fig. 3. (a) True scene. (b)—(f) Speckled versions of true scene with (b) 7y— 0 and SMSE=27.79 dB, (c) Ty=15 and SMSE=12.51 dB, (d)
Ty=50 and SMSE=8.89 dB, (e) Ty=100 and SMSE=7.96 dB, (f) T(=500 and SMSE="7.01 dB.

Table 1. Variation of the SMSE Parameter as a

where N={I},,I},,1 kS,Ik4} constitutes the set of intensi- Function of T,

ties of the four adjacent pixels of £ and the associated cpdf

is given in Eq. (4). We next explore some of the properties T SMSE (dB)
of Op. Note that E[O,]=E[E[l,|N;]1=E[l;]=[Gips,(i)di o 99,13
=f<6°i(’),;1 exp(-i/O})di=0,. Thus O} is an unbiased esti- 15 12.51
mator of Oj,. 20 11.26
We next show that the variance of O, is less than or 50 8.89
equal to that of I,, proving that the unbiased estimated 100 7.96

image O is less noisy than the raw image I. Indeed, 500 7.01
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var[l,] - var[O}]
= E[I}] - E*[I,,] - (E[E’[I,JN;.]1 - EX[E[1|\}]D)
= E[I}] - E*[1] - (E[E’[1,IN,]] - E(1)
= E[1}] - E[E*[I,|\;]]
= E[E[I}IN]] - E[E*[T,N, ] = E[E[TING] - EX[1 NG ]]
=0, (9)

where the last step follows from Jensen’s inequality for
conditional expectations.®® Since @ is unbiased, it also

follows that E[(I-0,)%]=E[(O;-0})?], which establishes
the fact that the proposed estimator has a lower MSE
than that in the case when the data are interpreted di-
rectly without processing (i.e., if we take I, as an estima-
tor for O).

Finally, the proposed estimate is explicitly given by

%
Or= f P, .., (lk\lkl, ,lk4)dlk
1 4
0

= J i €xp[— Ulip,ip,, --- »1x,) 1diy, (10)
0

where U(iy, iz, .- ,ir,) is given by Eq. (5). In practice, the
image intensity values are discrete (e.g., in an 8-bit imag-
ery) and the above integral is approximated by a finite
sum.

From an intuitive perspective, it is reasonable to ex-
clude the pixel intensity I, from the conditional estima-
tion of the noisy pixel intensity I, at point %2 given its
neighbors. Indeed, in the proposed algorithm for speckle
reduction (which will be described in Subsection 5.B), a
detection mechanism is placed to leave untouched the
“less noisy” pixel based on the threshold set by the param-
eters & and y and process only the ones that have failed
the threshold test (called the “uniformity test” in Subsec-
tion 5.B) therefore the pixel I, at point % is regarded as
suspicious and unreliable, and it is discarded in the esti-
mation of the true pixel intensity Oy.

B. Description of the Proposed Speckle-Reduction
Algorithm

A simulated annealing (SA) approach of speckle reduction
using the proposed MRF model was investigated
earlier'®!® and was shown to yield good results compared
with a well-known speckle-reduction algorithm.® How-
ever, a large number of iterations (i.e., 80 iterations'®) is
needed to denoise the speckled SAR imagery. Therefore,
even though the despeckled image obtained is impressive,
the major drawback of the SA-based algorithm is its com-
putational complexity. This issue is resolved in this paper
thanks to the nonlinear estimation approach described in
Subsection 5.A. The narrative description of the algo-
rithm will be provided first, followed by its detailed math-
ematical description.

The proposed despeckling algorithm is implemented as
follows. After the initialization of the algorithm’s param-
eters, the image is scanned and the “uniformity test” is
performed on every pixel. The first purpose of the unifor-
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mity test is to detect the “noisy” pixels based on a thresh-
old that is set by the user. The second purpose is to dif-
ferentiate a line (e.g., a road) from noisy pixels; edges of
lines can be confused with spatial noise due to the large
variability in intensity. This uniformity test and its con-
trol parameters allow us to handle the trade-off between
reducing speckle noise and oversmoothing. Proper selec-
tion of the control parameters allows us to reduce noise
while maintaining the high spatial content in the true
scene. The test consists in computing the intensity vari-
ability within a window W}, (of size 3 X3 here) centered
about the pixel k. This step is described in detail in the
mathematical description below. Low variability in inten-
sity within the window W, or along a direction (in the
presence of lines) is a sign of a relative intensity homoge-
neity, which means that the pixel in question is “less
noisy” based on the threshold set by the parameters § and
v. In this case, the pixel is left untouched. However, if the
variability in intensity is high, it is a sign of the presence
of noise. The pixel is therefore replaced with the estimate
given in Eq. (10). Based on our experience, we have ob-
served that restricting the set of possible values of i, in
Eq. (10) from the set {0,..., 255} to the set of intensity val-
ues corresponding to pixels in the window W,
={W, 01 ,W,._} does not alter the results significantly. In-
deed, the pro%ability of any pixel intensity outside the
window W, being nearly 0, their contribution to the esti-
mated intensity value is negligible. In addition, this ap-
proximation has the advantage of being faster.

The detailed mathematical description of the algorithm
is given below:

1. Step 1: Initialization Stage of the Algorithm
The following parameters are chosen on a case-by-case
basis:

e The coherence factor @, .

o The parameter &, which is the threshold for line or
noise detection.

e The parameter vy, which is the threshold number of pix-
els within the window W, of size 3 X3 centered in i,
whose variations are below &.

2. Step 2: Performing the Uniformity Test

Let us consider the kth pixel with intensity i;,. The win-
dow W, is extracted, and intensity variations are com-
puted about the center pixel i, as follows: AW, =|i,
-W),j=1,...,8. Next, evaluate the following [see Figs.
4(b) ‘and 4(0)]:

1. Nk=zf=1(AWkkj< 5). This is the number of pixels
within W, whose intensities are similar (i.e., less than 6
apart) to the intensity of the center pixel.

2. Perform the uniform-neighborhood test: U=(N, = v).

3. Horizontal line test: H={(AW};, <4) and (AW,
<o}

4. Vertical line test: V={(AWj;, <6) and (AW, < 9)}.

5. First oblique line test: 01={(AWkk2< d) and (AW,
<ok

6. Second oblique line test: Oy={(AW};, <) and
(AWpp <9}
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Line/noise detection test:

Test: Is (U or H or V or O, or Oy) true? If yes, the in-
tensity i, is unchanged. If no, a large variability has been
detected and i, is possibly noisy. Therefore the algorithm
proceeds to update the intensity.

3. Step 3: Performing the Intensity Update

1. Compute P, ..., @ik - sip ) =exp[-Uliy,
ik], ,ik4)], where ik=ij,j=0, . ,8.

2. Intensity update: i), — @, where
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W}"s
Op= 2 i, ..., Galis - i)
. 1 4
lk=Wk0

4. Step 4: Repeat Steps 2 and 3 for the Next Pixel
Increment & and go to step 2 until k=M XN, M XN being
the size of the image. The flow chart given in Fig. 4(a)
summarizes the proposed speckle-reduction algorithm.

Lar: g . v
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(a) Flow chart of the proposed speckle-reduction approach, (b) window W, centered on the kth pixel, (¢c) corresponding window
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(c)

(f)
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Fig. 5. (a) True scene, (b) speckled version of true scene with Ty=15 and SMSE=12.51 dB, (c) modified Lee filtered version, (d) Gamma
filtered version, (e) enhanced Frost filtered version, (f) proposed approach.

6. EXPERIMENTAL RESULTS AND
ANALYSIS

A. Speckle Reduction of Simulated Speckled Image

The speckle-reduction approach described in Subsection
5.B is applied here to the simulated speckled image ob-
tained in Fig. 3(c). Well-known speckle removal filters
such as the Gamma MAP, the modified Lee, and the en-
hanced Frost filters® are compared against our proposed
approach. The speckle removal results are shown in Figs.
5(c)-5(f). The metrics ENL, MSE, B, and SMSE defined in

Table 2. Results of Speckle Reduction Using the
Simulated Speckled Image

Technique ENL MSE B SMSE (dB)
Noisy image 17.39 11646  0.2291 12.51
Gamma filtered 61.39 476.78 0.3355 16.39
Modified Lee filtered 71.16  433.76 0.3885 16.80
Enhanced Frost filtered 71.15 431.56 0.3390 16.82
Proposed approach 85.73  246.95 0.4796 19.24
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Section 3 are measured and reported in Table 2. The vi-
sual comparison as well as the numerical results allows
us to claim that the proposed approach performs better.
In particular, in addition to the good speckle reduction,
the resulting images are not blurred and the features are
better preserved.

As expected, the proposed speckle-reduction approach
applied on the simulated images performs better com-

Vol. 23, No. 6/June 2006/J. Opt. Soc. Am. A 1277

pared with the standard methods (various images with
different amounts of noise, not shown here, have been
tested and present the same trend). This should not come
as a surprise, since the Gibbs energy function (5) was
used to simulate the speckled image and also in the
despeckling process. These results were shown here as a
way to confirm the validity of the proposed speckle-
reduction algorithm on simulated data. The unequivocal

(d)

Fig. 6. (a) Image 1. (b)—(e) Processed images using (b) modified Lee, (c) Gamma MAP, (d) enhanced Frost, and (e) proposed approaches.

(e)
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(d)

Fig. 7. (a) Image 2. (b)—(e) Processed images using (b) modified Lee, (c) Gamma MAP, (d) enhanced Frost, and (e) proposed approaches.

proof of superiority of the proposed approach will be illus-
trated on real SAR images and is discussed in Subsection
6.B.

B. Speckle Reduction Using Real Synthetic Aperture
Radar Images

In this subsection, various speckle-reduction filters, such
as the Lee,5 the Frost,9 the Kuan,8 the modified Lee, the
enhanced Frost, and the Gamma MAP ﬁlters,6 have been
tested on real SAR images. The best results obtained by
using the modified Lee, the Gamma MAP, and the en-

hanced Frost are compared against the proposed speckle-
reduction approach. Two real SAR images® are used for
this purpose.

The first image, shown in Fig. 6(a), is called image 1,
and it is of size 700 X 700. The second image, of size 600
X 600, is shown in Fig. 7(a); this will be called image 2.
The two uniform areas shown in these images are used to
monitor the speckle reduction via the ENL metric. This
metric will be the only one used to assess the noise filter-
ing quality for real SAR images, since the other metrics
require knowledge of the true image. At this stage of the
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work, the parameters of the algorithm are set manually
on a case-by-case basis. the parameters used are «;,,

=0.90, =5, and y=4 for image 1 and arkk_=0.93, 8=2, and
y=4 for image 2. !

The speckle-reduction process for image 1 is presented
in Figs. 6(b)-6(e), and the numerical results are summa-
rized in Table 3. The proposed approach gives ENL
=8.57 and ENL=14.17 against ENL=8.08 and ENL
=13.24 for the enhanced Frost. For the two areas tested,
the ENL is higher for the proposed approach than for the
other filters. The same trend is observed with image 2 as

Table 3. Speckle Reduction Using Image 1¢

Technique ENL (Area 1) ENL (Area 2)
Image 1 (noisy) 2.66 3.33
Gamma filtered version 7.64 12.51
Modified Lee filtered version 7.96 13.07
Enhanced Frost filtered version 8.08 13.24
Proposed approach 8.57 14.17

“The higher ENL is, the better is the speckle reduction.

Table 4. Speckle Reduction Using Image 2

Technique ENL (Area 1) ENL (Area 2)
Image 2 (noisy) 10.83 12.19
Gamma filtered version 35.46 59.94
Modified Lee filtered version 43.14 86.09
Enhanced Frost filtered version 44.34 88.39
Proposed approach 46.65 99.14

“The higher ENL is, the better is the speckle reduction.

MK
¥.d

B
-
* -

(a)

. |

(d)
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seen in Figs. 7(b)-7(e) and Table 4, where the proposed
approach produces ENL=46.65 and ENL=99.14 against
ENL=44.34 and ENL=88.39 for the enhanced Frost.
Generally, lack of features preservation and blur (or
oversmoothing) are some of the common adverse effects
that a filter may have on an image in the speckle denois-
ing process. We will therefore analyze the effects of the
various filters on image 1. In Fig. 6(a), one can see the
bright “cross” that will be used to assess the image deg-
radation of each filter. The zoomed versions of the cross
area before and after speckle reduction using the various
filters are presented in Fig. 8. It is clear to us that our
despeckled image, which is shown in Fig. 8(e), preserves
the edges better than the standard denoising methods.
For example, the true width of the cross is maintained
when our method is used [see Fig. 8(e)l, while the use of
standard methods (filters) tends to shrink the width [see
Figs. 8(b)-8(d)]. Additionally, certain seemingly false iso-
lated dark pixels that appear on the noisy cross [see Fig.
8(a)] have been smeared by the standard methods. In con-
trast, the proposed approach has apparently identified
these pixels as noisy pixels and effectively eliminated
their erroneous effect. After the filtering process, only the
proposed approach [see Fig. 8(e)] has extracted the noisy
pixels from the scene without blurring the image. Another
demonstration of the superiority of our filtering technique
can be found in Fig. 9. It represents an approximate pro-
file of the point-spread function before and after speckle
reduction, which is extracted from Fig. 8(a). This experi-
mental estimate of the “line response” of each filter is of-
ten used in practice by SAR-imagery specialists to assess
the resolution degradation brought about by the denois-

(e)

Fig. 8. (a) Zooming around the “cross” of image 1. (b)—(e) Processed images using (b) modified Lee, (¢) Gamma MAP, (d) enhanced Frost,

and (e) proposed approaches.
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Fig. 9. Image 1: point-spread-function-like curve before (+) and

after filtering using the proposed (A), enhanced Frost ([J), and
modified Lee (O) approaches.

ing process. An inspection of Fig. 9 reveals that the pro-
posed approach produces a narrow line response com-
pared with that of other methods. The curve (or line
response) corresponding to the proposed approach has
preserved its initial peak, which means that the initial
noise-free bright area has not been blurred. The enhanced
Frost and modified Lee outputs in that figure have lost
their initial peak.

7. CONCLUSION

We introduced a novel convex Gibbs energy function for
speckled SAR imagery in the context of a MRF. The model
is developed in accord with the physical, spatial statisti-
cal properties of speckle. This Gibbs energy function is
used in conjunction with the MS algorithm to generate
simulated speckled images. Speckle reduction is then ob-
tained through a novel nonlinear estimator, based on a
conditional expectation, which utilized the derived Gibbs
energy function. A comparative analysis of our results
against common speckle-reduction techniques such as the
Gamma MAP, the modified Lee, and the enhanced Frost
illustrates the superiority of the proposed approach. The
success of our filtering approach is attributed to the capa-
bility of the derived Gibbs energy function, within the
MRF model, to capture the intrinsic properties of speckle
in SAR imagery.
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