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Scene estimation from speckled synthetic
aperture radar imagery:

Markov-random-field approach

Ousseini Lankoande, Majeed M. Hayat, and Balu Santhanam
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A novel Markov-random-field model for speckled synthetic aperture radar (SAR) imagery is derived according
to the physical, spatial statistical properties of speckle noise in coherent imaging. A convex Gibbs energy func-
tion for speckled images is derived and utilized to perform speckle-compensating image estimation. The image
estimation is formed by computing the conditional expectation of the noisy image at each pixel given its neigh-
bors, which is further expressed in terms of the derived Gibbs energy function. The efficacy of the proposed
technique, in terms of reducing speckle noise while preserving spatial resolution, is studied by using both real
and simulated SAR imagery. Using a number of commonly used metrics, the performance of the proposed tech-
nique is shown to surpass that of existing speckle-noise-filtering methods such as the Gamma MAP, the modi-
fied Lee, and the enhanced Frost. © 2006 Optical Society of America
OCIS codes: 100.0100, 110.0110, 030.0030, 280.0280.
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. INTRODUCTION
key advantage of synthetic aperture radar (SAR) over

assive systems for imaging Earth’s surface is that it is
ndependent of any source that is external to the system
e.g., sunlight). A SAR system emits its own radiation,
hich is typically in the microwave to centimeter-wave

ange of the electromagnetic spectrum. Additionally, their
elatively long wavelengths, compared with those of pas-
ive and active optical sensors, make SAR systems ca-
able of imaging the Earth’s surface regardless of
eather conditions such as dust, cloud cover, and fog.1

oreover, the usual limitations imposed on the size of a
hysical antenna are lifted through the use of a synthetic
perture, which synthesizes a large antenna by coher-
ntly processing the signals received by a moving, smaller
ntenna.1 This has allowed SAR systems to achieve re-
arkably good resolutions. Indeed, although the resolu-

ion depends on the observed target, impressive 4-in.
esolution has been attained with an airborne system
alled “Lynx,” designed by Sandia National Laboratories
SNL) and produced by General Atomic.2

Unfortunately, the efficiency of aerial data collection
nd visualization with SAR systems is often impeded by
heir high susceptibility to speckle noise. A SAR system
easures both the amplitude and phase of the signals

choed from the Earth’s surface. However, due to the mi-
roscopic surface roughness of the reflecting objects on the
round, the amplitudes of the echoed signals reflected
rom the locality of each targeted spot have random
hases. The amplitudes of these signals interfere coher-
ntly at the antenna, which ultimately gives rise to the
ignal-dependent and grainy speckle noise formed in the
AR imagery.1,3,4

A large variety of speckle-reduction techniques have
een developed and proposed in the literature. Represen-
1084-7529/06/061269-13/$15.00 © 2
atives of these techniques include the Lee filter and its
erivatives,5,6 the geometric filter,7 the Kuan filter,8 the
rost filter and its derivatives,6,9 the Gamma MAP filter,6

he wavelet approach,10,11 and the approaches based on
arkov random fields (MRFs).12,13 A common assumption

n these approaches is that speckle noise is multiplicative
o the image intensity. 14 This assumption can be useful in
implifying the complex nature of speckled imagery and
artially capturing the signal-dependent nature of
peckle noise. In actuality, however, speckle noise is nei-
her multiplicative nor additive to the image
ntensity.15–17 Furthermore, speckled imagery does pos-
ess special spatial-correlation characteristics that have
een established in the statistical-optics literature18,19

ut have not been exploited, to the best of our knowledge,
n reducing speckle noise.

In this paper, we introduce a new framework for mod-
ling speckled SAR imagery that is based on MRFs in
onjunction with the physical statistical characteristics of
peckle.18,19 The capability of MRFs to model spatially
orrelated and signal-dependent phenomena makes them
n excellent choice for modeling speckled images without
he need to adopt a multiplicative-noise assumption. In
ddition, they can lend themselves to many statistical
mage-processing strategies that are not predicated on
ny multiplicative- or additive-noise assumptions. In par-
icular, we consider the speckled image as a realization of
he proposed MRF model with high energy, which is a
onsequence of the high variability of the pixel intensities
ue to the presence of speckle noise. We have embedded
oodman’s18 joint conditional probability density function

cpdf) of the speckled intensity of any two points into the
RF framework, which makes the resulting MRF consis-

ent with the physical attributes of speckled imagery. We
hen develop and test a speckle-compensating image esti-
006 Optical Society of America
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ation algorithm, which is a model-based conditional es-
imator of the speckle-free SAR image. Thanks to the
RF framework, this estimator is conveniently expressed

n terms of the conditional expectation of a pixel given its
eighbors. Indeed, this image estimator reduces the en-
rgy of the speckled image, which, in turn, reduces the
peckle noise. The proposed speckle-reduction approach is
pplied to both simulated and real SAR imagery, and the
esults are compared with those from existing speckle-
eduction techniques.

. MODEL
he proposed first-order MRF consists of an undirected
raph G= �V ,E� that has undirected edges drawn as lines.
he set of vertices of a segment of the graph, centered at
he kth pixel graph, is given by V= �k ,k1 ,k2 ,k3 ,k4�, as
hown in Fig. 1(a), and E is the set of edges. From the
raph G, two types of cliques are extracted: the single
lique and the pairwise clique, as depicted in Fig. 1(b). A
ingle clique C1 is simply any individual pixel in the im-
ge; a pairwise clique C2 is a set of any two vertically ad-
acent or horizontally adjacent pixels. An example of the
eighborhood of a pixel k is shown in Fig. 1(c).

. Description of the Markov-Random-Field Conditional
robability Density Function

oodman18 has derived the cpdf of the intensity Ikj
at

oint kj given the value of the intensity Iki
at point ki. In

his work, we have replaced the spatially constant mean
I�, used by Goodman,18 with Okj

, which is defined as the
patially inhomogeneous true intensity image at point kj.
f we denote the realization of the random variable Ikj

at
oint k by i , then the cpdf is given by

ig. 1. (a) Segment of the graph representing the first-order
RF. (b) Illustration of two types of cliques. (c) Neighborhood of

he pixel k according to the first-order MRF. Iki
corresponds to

he kith pixel value.
j kj
Ikj
�Iki

�ikj
�iki

�

=

exp�−
���rkikj

��2iki
+ ikj

	I − ���rkikj
��2
Okj

�
	1 − ���rkikj

��2
Okj

I0� 2iki
ikj

���rkikj
��

	1 − ���rkikj
��2
Okj

� ,

�1�

here I0�·� is a modified Bessel function of the first kind
nd zero order, and ���rkikj

�� and rkikj
are, respectively, the

oherence factor and the Euclidean distance between the
oints ki and kj. For simplicity, we assume that the coher-
nce factor has the following form (other, more complex
orms can also be considered):

���rkikj
�� =���rkikj

� � 	0,1� rkikj
� 1

0 otherwise
� . �2�

f rkikj
�1, then the cpdf in Eq. (1) becomes independent of

ki
, and we obtain pIkj

�Iki
�ikj

� iki
�=pIkj

�ikj
�=exp�−ikj

/Okj
� /Okj

,
hich is the familiar (negative) exponential density of the

peckle intensity.18 The correlation in Eq. (2) is assumed
o be limited to 1 unit from the center pixel; the implica-
ions of this assumption are discussed in detail in Subsec-
ion 2.C. This condition can still be met with more general
ypes of correlation (beyond 1 pixel) by preprocessing the
ata. For example, in the case of an image having a larger
orrelation, we may apply a spatial-interpolation or down-
ampling scheme and reduce the correlation to the form
iven in the above definition.12,20,21

Note that the Euclidean distances between the pairs of
ixels �ik1

, ik2
�, �ik2

, ik3
�, �ik3

, ik4
�, and �ik4

, ik1
� are 2 and

hat the distances between the pairs �ik2
, ik4

� and �ik1
, ik3

�
re 2. In both cases, the distance is greater than 1 unit.
y using the coherence factor defined in Eq. (2), we can
onclude that these pairs of pixels are conditionally inde-
endent given the center pixel ik. Thus, with the use of
ayes rules, the cpdf of the intensity of the center pixel,

k, given the four neighbors ik1
, ik2

, ik3
, and ik4

, takes the
ollowing form:

Ik�Ik1
,. . .,Ik4

�ik�ik1
, . . . ,ik4

�

=

pIk�Ik1
�ik�ik1

�pIk�Ik2
�ik�ik2

�pIk�Ik3
�ik�ik3

�pIk�Ik4

�ik�ik4
�

	pIk
�ik�
3 . �3�

ecall that each term in Eq. (3) is precisely known from
q. (1); therefore, after substitution, we obtain

Ik�Ik1
,. . .,Ik4

�ik�ik1
, . . . ,ik4

�

= exp��
j=1

4

− ln	B�ik,ikj
�
 −

A�ik,ikj
�

B�ik,ikj
�

+ ln�I0�C�ik,ikj
�

B�ik,ikj
��� − 3 ln	pIk

�ik�
� , �4�

here A�ik , ikj
�= ��rkkj

�2ikj
+ ik, B�ik , ikj

�= �1− ��rkkj
�2�Ok, and

�ik , ikj
�=2�ikikj

�1/2��rkkj
�. In the actual implementation

hase of the proposed speckle-reduction algorithm, “O ,”
k
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hich represents the true pixel intensity at index “k,” is
pproximated in Eq. (4) by the empirical average of the
bserved pixel values over the 3�3 window centered
bout the kth pixel. Thus the image created through this
ocal averaging is used as an initial estimate of the true
ntensity.

. Energy and Potential Functions
ur goal in this subsection is to utilize the cpdf presented

n Subsection 2.A to derive the energy and potential func-
ions of the MRF, which fully characterize the MRF. We
rst observe that the cpdf obtained in Eq. (4) admits the

ollowing representation:

pIk�Ik1
,. . .,Ik4

�ik�ik1
, . . . ,ik4

� = exp	− U�ik,ik1
, . . . ,ik4

�
,

here

U�ik,ik1
, . . . ,ik4

� = VC1
�ik� + VC2

�ik,ik1
, . . . ,ik4

�,

VC1
�ik� = 3 ln	pIk

�ik�
,

VC2
�ik,ik1

, . . . ,ik4
� = �

j=1

4 �A�ik,ikj
�

B�ik,ikj
�

− ln�I0�C�ik,ikj
�

B�ik,ikj
���

+ ln	B�ik,ikj
�
� . �5�

ased on the Hammersley–Clifford theorem,22,23 it is
traightforward to identify the energy function as
�ik , ik1

, . . . , ik4
�. Furthermore, by recalling the two types

f cliques that were defined in Section 2, we can associate
he potential functions VC1

�ik� and VC2
�ik , ik1

, . . . , ik4
� with

he single clique and the pairwise clique, respectively. The
bove energy function, which is easily shown to be convex
y using a convex composition rule,24,25 will be utilized in
he speckle-simulation and speckle-reduction processes.

. Constraints of the Model on Synthetic Aperture
adar Imagery Data
e will now discuss in depth the implications of the as-

umption made regarding the coherence factor.
In Subsection 2.A, we assumed that the coherence fac-

or decays to 0 beyond 1 pixel. If we let N denote the
ample spacing and R the spatial resolution of the SAR
magery, the aforementioned assumption leads us to the
ollowing constraint: R�2N. On the other hand, the Ny-
uist sampling criterion sets another constraint, given by
�R. Therefore the SAR data that will be most suitable

or the proposed model must satisfy the following con-
traint:

1 � R/N � 2. �6�

t this point, the following question comes in mind: How
ractical is the above constraint? Indeed, numerous exist-
ng SAR imaging systems do meet the above criterion, as
een by the following examples, which makes our as-
umption about the correlation factor realistic from a
ractical standpoint. The real SAR imageries used in this
ork, provided by Sandia National Laboratories (SNL),26

ave the ratio R /N�1.2. Another SAR system used at
NL, the “Lynx,” produces SAR images having a ratio
/N of 1.5 for the earlier system and 1.18 for the most

urrent one.2,27 Two interferometric SAR systems used by
he Brigham Young University Center for Remote
ensing28 produce SAR imageries with R /N�1. In addi-
ion, the Japanese Earth Resources Satellite (JERS) SAR
ystem generates SAR images with spatial resolutions of
6 and 14 m along the range and azimuth, respectively;
ts sample spacing is 12.5 m in both direction, which

akes the ratio R /N fall between 1.12 and 1.28.29 For the
uropean Remote Sensing Satellite (ERS) SAR systems,

he ratio R /N is between 1.2 and 2.30 Finally, the Envi-
onment Canada CV-580 airborne SAR produces SAR im-
geries having the ratio R /N of 1.25 in the range and 1.38
n the azimuth.31

. IMAGE QUALITY ASSESSMENT
ARAMETERS

n this paper, four metrics are used to assess the quality
f the speckle reduction. The first metric is the mean
quare error (MSE) between the noise-free (true) I and
he denoised images Î, defined by

MSE = K−1�
i=1

K

�Ii − Iî�2,

here K is the total number of pixels in the image. The
econd metric is the so-called � parameter,10,32 introduced
y Sattar et al.32 This parameter assesses the quality of
dge preservation; it takes values between 0 and 1, where
corresponds to the best possible edge preservation. More
recisely, the � parameter is defined by

� =
��IH − IH,IĤ − IĤ�

��IH − IH,IH − IH���IĤ − IĤ,IĤ − IĤ�

,

here, for any two images I1 and I2, ��I1 ,I2�=�i=1
K I1i

I2i
.

he quantities IH and IĤ are the high-pass filtered ver-
ions (using the Laplacian operator) of I and Î, respec-
ively.

The third metric, the signal-to-mean-square-error
atio13,33–35 (SMSE) in dB, is defined by

SMSE = 10 log10� �j=1

K
Ij

2

�j=1

K
�Ii − Iî�2� .

inally, the fourth metric is the effective number of looks
ENL), which is often used in practice to estimate the
peckle-noise level in SAR imagery.6,12,13,15,16,35,36 The
igher this parameter, the lower the speckle noise. What
istinguishes the ENL from the three prior metrics is that
t does not require knowledge of the true image, which is
ypically the case when denoising is applied to real SAR
magery. Thus the ENL is used to assess the speckle-
eduction performance in both simulated and real speck-
ed images. The ENL is computed by calculating the mean
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nd the variance of the intensity over a uniform area:

ENL =
�K0

−1�i�A
Iî�2

K0
−1�i�A

Îi
2 − �K0

−1�i�A
Iî�2 ,

here A represents the set of indices corresponding to a
niform area in the image Î and K0 is the number of ele-
ents in A.
Note that the use of different figures of merit for task-

riented applications (i.e., target detection or pattern rec-
gnition) may be more meaningful than employing the
bove metrics. However, since in this paper we do not ad-
ress a specific task, considering metrics that assess the
oise-reduction properties of the processed imagery, such
s those considered in this work, would be appropriate.

. SIMULATION OF SPECKLED IMAGES
n this section, we utilize the MRF model developed in
ection 2 to simulate speckled images with different tem-
eratures from those of true noise-free images. It is to be
oted that we are not simulating SAR speckled imagery
ut rather we are simulating the MRF defined by the
ibbs energy function (5). The proposed simulation ap-
roach uses the Metropolis-sampler (MS) algorithm37 to
pdate the pixel intensity of the image. The simulation of

ig. 2. Flow chart of the SA method undertaken to simulate
peckled images.
peckled images can be summarized as follows. The first
tep consists in setting the values of two parameters: the
emperature T0 and the coherence factor �rkkj

. The tem-
erature T0 controls the amount of noise to be introduced
nto the image, and �rkkj

controls the level of similarity
hat a pixel has with its four neighbors.

Once the initialization is done, we proceed to update
he image pixel intensity: For each pixel intensity ik of
he image, a candidate intensity iknew

, other than itself,
s randomly chosen. The candidate pixel is accepted with
robability p=min	1,exp�−	U /T0�
, where 	U
U�iknew

,kk1
, . . . , ik4

�−U�ik , ik1
, . . . , ik4

� and U is the energy
unction defined in Eq. (5). This procedure is applied to all
ixels of the image, after which the speckled image is re-
urned. A flow chart of the entire simulation algorithm is
hown in Fig. 2.

We will now apply this algorithm to an aerial photo-
raph of a scene, which we called the “true scene.”38 Fig-
res 3(b)–3(f) show the results of the simulations for vary-

ng initial temperatures T0. It can be seen that the noise
evel increases with the temperature, which is accompa-
ied by a decrease in the parameter SMSE, as summa-
ized in Table 1. If the temperature T0 is set high (e.g.,
10), the pixel candidates are all accepted, resulting in a

ery noisy image [see Fig. 3(f)]. On the other hand, if the
emperature is very low (e.g., �0), most candidate pixels
re rejected, resulting in an almost noise-free image, as
een in Fig. 3(b).

. PROPOSED SPECKLE-REDUCTION
PPROACH
t the heart of the proposed speckle-reduction technique

s a novel pixel-by-pixel nonlinear estimator of the true
mage. We begin by describing this estimator and exploit
he underlying MRF model to provide a simple means for
omputing it. We also establish the denoising capability of
he estimator by showing that the estimated image has a
maller variance than that of the speckled, raw image. We
ubsequently give a description of the proposed speckle-
eduction algorithm that uses the aforementioned nonlin-
ar image estimator.

. Nonlinear Estimator of the True Image
iven a speckled image I, consider a nonlinear estimator
f Ok, the kth pixel of the true image O, defined by the
onditional expectation

Ok̂ = E	Ik�I \ �Ik�
, �7�

here I\ �Ik� is the set of all pixels in the image excluding
k. Now, using the Markovian nature of I, we can reduce
he above estimator to

Ô = E	I �N 
, �8�
k k k
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here Nk= �Ik1
,Ik2

,Ik3
,Ik4

� constitutes the set of intensi-

ies of the four adjacent pixels of k and the associated cpdf
s given in Eq. (4). We next explore some of the properties
f Ok̂. Note that E	Ok̂
=E†E	Ik �Nk
‡=E	Ik
=�0


ipIk
�i�di

�0

iOk

−1 exp�−i /Ok�di=Ok. Thus Ok̂ is an unbiased esti-
ator of Ok.
We next show that the variance of Ok̂ is less than or

qual to that of Ik, proving that the unbiased estimated
mage Ô is less noisy than the raw image I. Indeed,

ig. 3. (a) True scene. (b)–(f) Speckled versions of true scene wi
0=50 and SMSE=8.89 dB, (e) T0=100 and SMSE=7.96 dB, (f) T
Table 1. Variation of the SMSE Parameter as a
Function of T0

T0 SMSE (dB)

0 29.13
15 12.51
20 11.26
50 8.89

100 7.96
500 7.01
th (b) T0→0 and SMSE=27.79 dB, (c) T0=15 and SMSE=12.51 dB, (d)
0=500 and SMSE=7.01 dB.



v

w
c
f
t
t
r
t

w
i
e
s

c
t
n
r
d
“
e
t
t
s
m

B
A
A
u
e
w
e
n
e
t
p
t
S
r
e

f
e
p

m
o
f
l
v
t
r
t
w
s
a
a
m
s
p
n
n

v
o
g
s
E
u
=
d
w
m
p

i

1
T
b

•
•
n
•
e
w

2
L
d
p
−
4

w
a

�

�

�

1274 J. Opt. Soc. Am. A/Vol. 23, No. 6 /June 2006 Lankoande et al.
ar	Ik
 − var	Ok̂


= E	Ik
2
 − E2	Ik
 − �E†E2	Ik�Nk
‡ − E2

†E	Ik�Nk
‡�

= E	Ik
2
 − E2	Ik
 − �E†E2	Ik�Nk
‡ − E2	Ik
�

= E	Ik
2
 − E†E2	Ik�Nk
‡

= E†E	Ik
2�Nk
‡ − E†E2	Ik�Nk
‡ = E†E	Ik

2�Nk
 − E2	Ik�Nk
‡

� 0, �9�

here the last step follows from Jensen’s inequality for
onditional expectations.39 Since Ok̂ is unbiased, it also
ollows that E	�I−Ok�2
�E	�Ok̂−Ok�2
, which establishes
he fact that the proposed estimator has a lower MSE
han that in the case when the data are interpreted di-
ectly without processing (i.e., if we take Ik as an estima-
or for Ok).

Finally, the proposed estimate is explicitly given by

Ok̂ =�
0




ikpIk�Ik1
,. . .,Ik4

�ik�ik1
, . . . ,ik4

�dik

=�
0




ik exp	− U�ik,ik1
, . . . ,ik4

�
dik, �10�

here U�ik , ik1
, . . . , ik4

� is given by Eq. (5). In practice, the
mage intensity values are discrete (e.g., in an 8-bit imag-
ry) and the above integral is approximated by a finite
um.

From an intuitive perspective, it is reasonable to ex-
lude the pixel intensity Ik from the conditional estima-
ion of the noisy pixel intensity Ik at point k given its
eighbors. Indeed, in the proposed algorithm for speckle
eduction (which will be described in Subsection 5.B), a
etection mechanism is placed to leave untouched the
less noisy” pixel based on the threshold set by the param-
ters � and  and process only the ones that have failed
he threshold test (called the “uniformity test” in Subsec-
ion 5.B) therefore the pixel Ik at point k is regarded as
uspicious and unreliable, and it is discarded in the esti-
ation of the true pixel intensity Ok.

. Description of the Proposed Speckle-Reduction
lgorithm
simulated annealing (SA) approach of speckle reduction

sing the proposed MRF model was investigated
arlier15,16 and was shown to yield good results compared
ith a well-known speckle-reduction algorithm.6 How-

ver, a large number of iterations (i.e., 80 iterations16) is
eeded to denoise the speckled SAR imagery. Therefore,
ven though the despeckled image obtained is impressive,
he major drawback of the SA-based algorithm is its com-
utational complexity. This issue is resolved in this paper
hanks to the nonlinear estimation approach described in
ubsection 5.A. The narrative description of the algo-
ithm will be provided first, followed by its detailed math-
matical description.

The proposed despeckling algorithm is implemented as
ollows. After the initialization of the algorithm’s param-
ters, the image is scanned and the “uniformity test” is
erformed on every pixel. The first purpose of the unifor-
ity test is to detect the “noisy” pixels based on a thresh-
ld that is set by the user. The second purpose is to dif-
erentiate a line (e.g., a road) from noisy pixels; edges of
ines can be confused with spatial noise due to the large
ariability in intensity. This uniformity test and its con-
rol parameters allow us to handle the trade-off between
educing speckle noise and oversmoothing. Proper selec-
ion of the control parameters allows us to reduce noise
hile maintaining the high spatial content in the true

cene. The test consists in computing the intensity vari-
bility within a window Wk (of size 3�3 here) centered
bout the pixel k. This step is described in detail in the
athematical description below. Low variability in inten-

ity within the window Wk or along a direction (in the
resence of lines) is a sign of a relative intensity homoge-
eity, which means that the pixel in question is “less
oisy” based on the threshold set by the parameters � and
. In this case, the pixel is left untouched. However, if the
ariability in intensity is high, it is a sign of the presence
f noise. The pixel is therefore replaced with the estimate
iven in Eq. (10). Based on our experience, we have ob-
erved that restricting the set of possible values of ik in
q. (10) from the set {0,…, 255} to the set of intensity val-
es corresponding to pixels in the window Wk
�Wk0

, . . . ,Wk8
� does not alter the results significantly. In-

eed, the probability of any pixel intensity outside the
indow Wk being nearly 0, their contribution to the esti-
ated intensity value is negligible. In addition, this ap-

roximation has the advantage of being faster.
The detailed mathematical description of the algorithm

s given below:

. Step 1: Initialization Stage of the Algorithm
he following parameters are chosen on a case-by-case
asis:

The coherence factor �rkkj
.

The parameter �, which is the threshold for line or
oise detection.
The parameter , which is the threshold number of pix-

ls within the window Wk of size 3�3 centered in ik
hose variations are below �.

. Step 2: Performing the Uniformity Test
et us consider the kth pixel with intensity ik. The win-
ow Wk is extracted, and intensity variations are com-
uted about the center pixel ik as follows: 	Wkkj

= �ik
Wkj

�, j=1, . . . ,8. Next, evaluate the following [see Figs.
(b) and 4(c)]:

1. Nk=�j=1
8 �	Wkkj

���. This is the number of pixels
ithin Wk whose intensities are similar (i.e., less than �
part) to the intensity of the center pixel.
2. Perform the uniform-neighborhood test: U= �Nk��.
3. Horizontal line test: H= ��	Wkk1

��� and �	Wkk5
���.
4. Vertical line test: V= ��	Wkk3

��� and �	Wkk7
����.

5. First oblique line test: O1= ��	Wkk2
��� and �	Wkk6

���.
6. Second oblique line test: O2= ��	Wkk4

��� and
	W ����.
kk8
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Line/noise detection test:
Test: Is (U or H or V or O1 or O2) true? If yes, the in-

ensity ik is unchanged. If no, a large variability has been
etected and ik is possibly noisy. Therefore the algorithm
roceeds to update the intensity.

. Step 3: Performing the Intensity Update
1. Compute pIk�Ik1

,. . .,Ik4
�ik � ik1

, . . . , ik4
�=exp	−U�ik ,

k1
, . . . , ik4

�
, where ik=Wkj
, j=0, . . . ,8.

2. Intensity update: ik←Ok̂, where

Fig. 4. (a) Flow chart of the proposed speckle-reduction approa
after subtraction of i .
k
Ok̂ = �
ik=Wk0

Wk8

ikpIk�Ik1
,. . .,Ik4

�ik�ik1
, . . . ,ik4

�.

. Step 4: Repeat Steps 2 and 3 for the Next Pixel
ncrement k and go to step 2 until k=M�N, M�N being
he size of the image. The flow chart given in Fig. 4(a)
ummarizes the proposed speckle-reduction algorithm.

window Wk centered on the kth pixel, (c) corresponding window
ch, (b)
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. EXPERIMENTAL RESULTS AND
NALYSIS
. Speckle Reduction of Simulated Speckled Image
he speckle-reduction approach described in Subsection
.B is applied here to the simulated speckled image ob-
ained in Fig. 3(c). Well-known speckle removal filters
uch as the Gamma MAP, the modified Lee, and the en-
anced Frost filters6 are compared against our proposed
pproach. The speckle removal results are shown in Figs.
(c)–5(f). The metrics ENL, MSE, �, and SMSE defined in

ig. 5. (a) True scene, (b) speckled version of true scene with T0
ltered version, (e) enhanced Frost filtered version, (f) proposed
Table 2. Results of Speckle Reduction Using the
Simulated Speckled Image

Technique ENL MSE � SMSE (dB)

oisy image 17.39 1164.6 0.2291 12.51
amma filtered 61.39 476.78 0.3355 16.39
odified Lee filtered 71.16 433.76 0.3885 16.80
nhanced Frost filtered 71.15 431.56 0.3390 16.82
roposed approach 85.73 246.95 0.4796 19.24
=15 and SMSE=12.51 dB, (c) modified Lee filtered version, (d) Gamma
approach.
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ection 3 are measured and reported in Table 2. The vi-
ual comparison as well as the numerical results allows
s to claim that the proposed approach performs better.
n particular, in addition to the good speckle reduction,
he resulting images are not blurred and the features are
etter preserved.
As expected, the proposed speckle-reduction approach
pplied on the simulated images performs better com- r
ared with the standard methods (various images with
ifferent amounts of noise, not shown here, have been
ested and present the same trend). This should not come
s a surprise, since the Gibbs energy function (5) was
sed to simulate the speckled image and also in the
especkling process. These results were shown here as a
ay to confirm the validity of the proposed speckle-
eduction algorithm on simulated data. The unequivocal
ig. 6. (a) Image 1. (b)–(e) Processed images using (b) modified Lee, (c) Gamma MAP, (d) enhanced Frost, and (e) proposed approaches.
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roof of superiority of the proposed approach will be illus-
rated on real SAR images and is discussed in Subsection
.B.

. Speckle Reduction Using Real Synthetic Aperture
adar Images

n this subsection, various speckle-reduction filters, such
s the Lee,5 the Frost,9 the Kuan,8 the modified Lee, the
nhanced Frost, and the Gamma MAP filters,6 have been
ested on real SAR images. The best results obtained by
sing the modified Lee, the Gamma MAP, and the en-

ig. 7. (a) Image 2. (b)–(e) Processed images using (b) modified L
anced Frost are compared against the proposed speckle-
eduction approach. Two real SAR images26 are used for
his purpose.

The first image, shown in Fig. 6(a), is called image 1,
nd it is of size 700�700. The second image, of size 600
600, is shown in Fig. 7(a); this will be called image 2.
he two uniform areas shown in these images are used to
onitor the speckle reduction via the ENL metric. This
etric will be the only one used to assess the noise filter-

ng quality for real SAR images, since the other metrics
equire knowledge of the true image. At this stage of the

Gamma MAP, (d) enhanced Frost, and (e) proposed approaches.
ee, (c)
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ork, the parameters of the algorithm are set manually
n a case-by-case basis. the parameters used are �rkkj
0.90, �=5, and =4 for image 1 and �rkkj

=0.93, �=2, and
=4 for image 2.
The speckle-reduction process for image 1 is presented

n Figs. 6(b)–6(e), and the numerical results are summa-
ized in Table 3. The proposed approach gives ENL
8.57 and ENL=14.17 against ENL=8.08 and ENL
13.24 for the enhanced Frost. For the two areas tested,

he ENL is higher for the proposed approach than for the
ther filters. The same trend is observed with image 2 as

Table 3. Speckle Reduction Using Image 1a

Technique ENL (Area 1) ENL (Area 2)

mage 1 (noisy) 2.66 3.33
amma filtered version 7.64 12.51
odified Lee filtered version 7.96 13.07
nhanced Frost filtered version 8.08 13.24
roposed approach 8.57 14.17

aThe higher ENL is, the better is the speckle reduction.

Table 4. Speckle Reduction Using Image 2a

Technique ENL (Area 1) ENL (Area 2)

mage 2 (noisy) 10.83 12.19
amma filtered version 35.46 59.94
odified Lee filtered version 43.14 86.09
nhanced Frost filtered version 44.34 88.39
roposed approach 46.65 99.14
The higher ENL is, the better is the speckle reduction.
een in Figs. 7(b)–7(e) and Table 4, where the proposed
pproach produces ENL=46.65 and ENL=99.14 against
NL=44.34 and ENL=88.39 for the enhanced Frost.
Generally, lack of features preservation and blur (or

versmoothing) are some of the common adverse effects
hat a filter may have on an image in the speckle denois-
ng process. We will therefore analyze the effects of the
arious filters on image 1. In Fig. 6(a), one can see the
right “cross” that will be used to assess the image deg-
adation of each filter. The zoomed versions of the cross
rea before and after speckle reduction using the various
lters are presented in Fig. 8. It is clear to us that our
especkled image, which is shown in Fig. 8(e), preserves
he edges better than the standard denoising methods.
or example, the true width of the cross is maintained
hen our method is used [see Fig. 8(e)], while the use of

tandard methods (filters) tends to shrink the width [see
igs. 8(b)–8(d)]. Additionally, certain seemingly false iso-

ated dark pixels that appear on the noisy cross [see Fig.
(a)] have been smeared by the standard methods. In con-
rast, the proposed approach has apparently identified
hese pixels as noisy pixels and effectively eliminated
heir erroneous effect. After the filtering process, only the
roposed approach [see Fig. 8(e)] has extracted the noisy
ixels from the scene without blurring the image. Another
emonstration of the superiority of our filtering technique
an be found in Fig. 9. It represents an approximate pro-
le of the point-spread function before and after speckle
eduction, which is extracted from Fig. 8(a). This experi-
ental estimate of the “line response” of each filter is of-

en used in practice by SAR-imagery specialists to assess
he resolution degradation brought about by the denois-
a

ig. 8. (a) Zooming around the “cross” of image 1. (b)–(e) Processed images using (b) modified Lee, (c) Gamma MAP, (d) enhanced Frost,
nd (e) proposed approaches.
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ng process. An inspection of Fig. 9 reveals that the pro-
osed approach produces a narrow line response com-
ared with that of other methods. The curve (or line
esponse) corresponding to the proposed approach has
reserved its initial peak, which means that the initial
oise-free bright area has not been blurred. The enhanced
rost and modified Lee outputs in that figure have lost
heir initial peak.

. CONCLUSION
e introduced a novel convex Gibbs energy function for

peckled SAR imagery in the context of a MRF. The model
s developed in accord with the physical, spatial statisti-
al properties of speckle. This Gibbs energy function is
sed in conjunction with the MS algorithm to generate
imulated speckled images. Speckle reduction is then ob-
ained through a novel nonlinear estimator, based on a
onditional expectation, which utilized the derived Gibbs
nergy function. A comparative analysis of our results
gainst common speckle-reduction techniques such as the
amma MAP, the modified Lee, and the enhanced Frost

llustrates the superiority of the proposed approach. The
uccess of our filtering approach is attributed to the capa-
ility of the derived Gibbs energy function, within the
RF model, to capture the intrinsic properties of speckle

n SAR imagery.
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