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a b s t r a c t

The problem of furnishing an orthogonal basis of eigenvectors for the discrete Fourier

transform (DFT) is fundamental to signal processing and also a key step in the recent

development of discrete fractional Fourier transforms with projected applications in

data multiplexing, compression, and hiding. Existing solutions toward furnishing this

basis of DFT eigenvectors are based on the commuting matrix framework. However,

none of the existing approaches are able to furnish a commuting matrix where both the

eigenvalue spectrum and the eigenvectors are a close match to corresponding properties

of the continuous differential Gauss–Hermite (G–H) operator. Furthermore, any linear

combination of commuting matrices produced by existing approaches also commutes

with the DFT, thereby bringing up issues of uniqueness.

In this paper, inspired by concepts from quantum mechanics in finite dimensions, we

present an approach that furnishes a basis of orthogonal eigenvectors for both versions

of the DFT. This approach furnishes a commuting matrix whose eigenvalue spectrum is a

very close approximation to that of the G–H differential operator and in the process

furnishes two generators of the group of matrices that commute with the DFT.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Conventional Fourier analysis treats frequency and
time as orthogonal variables and consequently is only
suitable for the analysis of signals with stationary
frequency content. The fractional Fourier transform (FRFT),
an angular generalization of the Fourier transform,
enables the analysis of waveforms, such as chirps, that
possess time–frequency coupling. The continuous Fourier
integral transform of a finite energy signal is defined via

XðoÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
�1

xðtÞ expð�jotÞdt ¼FðxðtÞÞ.

Gauss–Hermite (G–H) functions defined by

HnðtÞ ¼
1

p1=4
ffiffiffiffiffiffiffiffiffiffi
2nn!
p hnðtÞ exp �

t2

2

� �
,

where hnðtÞ is the nth-order Hermite polynomial, are
solutions to the second-order differential equation

d2x

dt2
� ðt2 þ lÞxðtÞ ¼ 0.

They are eigenfunctions of the G–H differential operator

HðxðtÞÞ ¼ ðD2 � t2IÞxðtÞ ¼ �ð2nþ 1ÞxðtÞ,

with a corresponding eigenvalue of ln ¼ �ð2nþ 1Þ, where
D;I denote the derivative and identity operators. They
are also eigenfunctions of the Fourier integral operator

FðHnðtÞÞ ¼ exp �jn
p
2

� �
HnðtÞ,
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with a corresponding eigenvalue of ln ¼ expð�jnp=2Þ.
These G–H functions are also eigenfunctions of the FRFT
defined via

XaðuÞ ¼

Z 1
�1

xðtÞKaðt;uÞdt,

Kaðt;uÞ ¼
X1

n¼�1

expð�jnaÞHnðtÞHnðuÞ.

Quantum mechanics as it pertains to the harmonic
oscillator connects the canonical variables, position, and
momentum through the Fourier integral operator F via [1,2]

F ¼ exp j
p
4
ðp̂

2
þ q̂

2
� 1Þ

� �
,

where q̂ and p̂ are the position and momentum operators
that are related through a similarity transformation [2]:

p̂ ¼Fq̂Fy; p̂ ¼ �j
d

dq
,

where Fy denotes the Hermitian adjoint of F and p; q

denote the eigenvalues of their corresponding operators.
In the continuous case the expression inside the expo-
nential is exactly the G–H differential operator:

ðq̂
2
þ p̂

2
ÞxðqÞ ¼ �

d2

dq2
xðqÞ þ q2xðqÞ ¼ �HðxðqÞÞ.

Consequently, G–H functions are also the eigenfunctions
of the quantum harmonic oscillator. The position and
momentum1 operators furthermore do not commute and
their commutator corresponds to the identity [2]

½q̂; p̂� ¼ q̂p̂� p̂q̂ ¼ jI. (1)

The connection between the G–H operator and the Fourier
transform F can be further expressed as

ðp̂
2
þ q̂

2
� 1ÞxðqÞ ¼ �ðHþ 1ÞðxðqÞÞ ¼

�4j

p
logFðxðqÞÞ. (2)

This relation implies that in the continuous case the G–H
operator is related to the logarithm of the Fourier transform.

2. Prior work

The eigenvalues and eigenvectors of the discrete
Fourier transform (DFT) matrix have been of interest from
early work [3], where the DFT eigenvalue problem was
discussed in detail. Work in [4] outlines an analytical
expression for the eigenvectors of the DFT corresponding
to distinct eigenvalues. However, this expression involves
infinite sums and is not computable. Recent efforts to
develop a discrete version of the FRFT have focussed on
the DFT and its centralized version and on generating an
orthogonal basis of eigenvectors for the DFT by furnishing
a commuting matrix that has a non-degenerate eigenva-
lue spectrum and shares a common basis of eigenvectors
with the DFT. These approaches, however, do not yield a
unique discretization since the sum or the product of
matrices that commute with the DFT also commutes with

the DFT. Our goal in this paper is to define a discrete
equivalent of the G–H differential operator H that will
furnish the basis for both the centered and off-centered
versions of the DFT matrix. This framework will enable the
definition of a discrete version of the FRFT and also serve
as the discrete equivalent of the G–H operator with
eigenvalues and eigenvectors that closely resemble those
of the continuous counterpart.

Existing approaches toward obtaining an orthogonal
basis of eigenvectors for the DFT can be grouped into two
basic categories. The first approach called the S matrix
approach or the Harper matrix approach [5–7] is based on
replacing the derivatives in the G–H differential equation
with finite differences thereby converting the differential
equation into a difference equation. The approach furnishes
an almost tridiagonal (Harper) matrix that commutes with
the DFT matrix and consequently furnishes a basis of
orthogonal DFT eigenvectors when N is not a multiple of
four. Other numerical approaches that use orthogonal
projections to furnish the eigenvectors of the Harper matrix
S have been recently investigated in [8]. As shown in [5], the
Harper matrix does not converge to the G–H operator in the
limit, but rather to the Mathieu differential operator.
Furthermore, the eigenvalue spectrum is not the linear
spectrum with uniform spacing needed for consideration as
the discrete G–H operator as described in Fig. 1.

The second approach pioneered by Grünbaum [9] and
later refined in [10] is an algebraic approach that furnishes
tridiagonal matrices that commute with both the centered
and the off-centered versions of the DFT. It was shown in [9]
that the commuting matrix in the limit converges to the
G–H differential operator. However, the eigenvalues of the
matrix do not exhibit the uniform integer spacing needed to
be considered a viable candidate for the discrete G–H
operator. Since the sum and the product of the different
commuting matrices also commute with the DFT, numerous
other commuting matrices can be furnished and the
question of uniqueness of the commuting matrix approach
arises. Recently, a combination of the commuting matrices
from the Harper and Grünbaum matrix approaches have
been used to furnish a basis of eigenvectors for the DFT
[11,12], where the squared norm of error between the
eigenvectors and the corresponding discrete G–H function
was used to quantify the accuracy of the eigenvectors.

In this paper, we adopt a physical approach to develop
a unique commuting matrix framework for both the CDFT
and the DFT that: (a) furnishes a full orthogonal basis of
eigenvectors resembling G–H functions via the eigenvalue
problem for generalized K-symmetric matrices [13],
(b) has an eigenvalue spectrum very close to that of H,
(c) converges to H in the limit, and (d) is quadratic in
position and momentum analogous to the Hamiltonian of
the quantum-mechanical harmonic oscillator.

3. Discrete G–H operator

3.1. Centered case

Toward formulating a physically meaningful, discrete,
and computable version of the G–H operator, we borrow

ARTICLE IN PRESS

1 Although the analysis done here is done in terms of the quantum-

mechanical variables p̂; q̂, they can be any pair of canonical variables

such as time and frequency.
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some ideas from quantum mechanics in finite dimensions
[1]. First we define a diagonal matrix Q 2 RN�N whose
entries are given by

Qrr ¼ q½r� ¼

ffiffiffiffiffiffi
2p
N

r
r; jrjp

ðN � 1Þ

2
. (3)

This operator constitutes the discrete equivalent of the
position operator in finite dimensional space. We then
define the DFT matrix and its centered version as

fWocgkn ¼
1ffiffiffiffi
N
p exp �j

2p
N

nk

� �
; 0pn; kpðN � 1Þ,

fWcgkn ¼
1ffiffiffiffi
N
p exp �j

2p
N
ðn� cÞðk� cÞ

� �
,

with c ¼ ðN � 1Þ=2. For purposes of discussion both these
matrices will be denoted by W. The version discussed will
be clear from the context. The matrix P is defined by
combining the matrices Q and W as

P ¼WQWH, (4)

where WH denotes the Hermitian adjoint of W. This
matrix constitutes the discrete equivalent of the momen-
tum operator in finite dimensions. Following the approach
in the continuous case, the discrete Hamiltonian matrix T1

that commutes with the CDFT is then defined as

T1 ¼ PHPþ Q HQ ¼ P2
þQ 2. (5)

We have shown in [14] that this matrix commutes with the
CDFT and furnishes a basis of orthogonal CDFT eigenvectors
as illustrated in Fig. 2. To further aid in our understanding of
the commutation properties, we define a matrix A to be
centrosymmetric or J-symmetric if it satisfies

JAJ ¼ A,

where J ¼W2 is the exchange matrix of the same dimensions
as A with ones along the anti-diagonal. In a similar vein, a
matrix A is defined to be J-anti-symmetric if

JAJ ¼ �A.

Since q2½r� ¼ q2½�r�;0prpðN � 1Þ, from the form of Q
defined in Eq. (3), the matrix Q 2 is centrosymmetric:

JQ 2J ¼ Q 2
 !W2Q 2W2

¼ Q 2. (6)

We have also shown in [14] that C1 ¼ ½Q ;P� commutes
with the CDFT sharing a basis of eigenvectors since

W2QW2
¼ �Q (7)

or, in other words, the matrix Q is J ¼W2-anti-symmetric.
Eqs. (6) and (7) constitute constraints on the position
matrix so that the resultant T1 and C1 both commute with
the CDFT. Eq. (7) is the stricter condition since it implies
the relation in Eq. (6). Although this analysis was for the
CDFT, it applies to the conventional DFT also.

A generalized form of the commuting matrix is
obtained by first defining a modified position matrix and
the corresponding momentum matrix via

fQ agmn ¼

fQ gmn; m ¼ n;0pm;npN � 1;

ja; m ¼ 0;n ¼ N � 1;

�ja; m ¼ N � 1;n ¼ 0;

8><
>: Pa ¼WQ aWH.

(8)

The more general additive form2 of the commuting matrix
expressed in terms of these modified operators is

T2 ¼ ðQ a � jPaÞðQ a þ jPaÞ þ I ¼ P2
a þ Q 2

a þ j½Q a;Pa� þ I.

(9)

This form of the commuting matrix invokes both terms T1

and C1 that commute with the CDFT. The scalar off-
diagonal parameter3 a removes the degeneracy present
with a diagonal Q . The motivation behind using a complex
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Fig. 1. Comparison of the eigenvalue spectra: (a) eigenvalues of the Grünbaum commuting matrix approach in [10] for N ¼ 128, (b) eigenvalues of the

Harper matrix approach in [5] for N ¼ 128.

2 Product terms such as ðP2
þ Q 2

Þ½Q ;P� and other functions that also

commute with W are not included. The intention is to retain just terms

that are quadratic in Q and P analogous to the energy of the standard

harmonic oscillator since we desire a second-order differential equation

in the limit.
3 While other forms of correcting the degeneracy are possible, this

represents the simplest form of corner correction.
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Q matrix is so that the commutation conditions and
Hermitian symmetry of Q are both satisfied. Fig. 3 depicts
the eigenvalue spectrum of T2 for N ¼ 129 and a ¼ 8.
Comparing the eigenvalue spectrum of T2 and T1 we see
that the deviation from ideal linear spectrum is larger for
T2 than for T1. Another key observation is the fact that the
matrices P2, QP, PQ are also J ¼W2-symmetric since

JP2J ¼W2WQ 2WHW2
¼W3Q 2W ¼WW2Q 2W2WH

¼ P2,

JQPJ ¼W2QWQWHW2
¼ ðW2QW2

ÞWðW2QW2
ÞWH

¼ QWQWH
¼ QP,

JPQJ ¼W2WQWHQW2
¼ �WQWQW2

¼WQWHQ ¼ PQ ,

(10)

where we have used the fact that the position operator Q
defined in Eq. (3) is J ¼W2-anti-symmetric and Q 2 is
J ¼W2-symmetric. A direct consequence of this observation
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Fig. 2. Eigenvalue decomposition of the commutator for the CDFT: (a) sorted eigenvalues of the commutator T1 for N ¼ 128, (b) selected symmetric and

skew-symmetric eigenvectors of the commutator for k ¼ 0;1;2;3.
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is the result that the commuting matrices T1 and T2 are
both symmetric J ¼W2-symmetric matrices. In turn the
framework from [15] on centrosymmetric matrices can be
applied to furnish orthonormal symmetric or skew-sym-
metric eigenvectors.

3.2. Convergence to the G– H operator

Here we show that the commutor matrix T1 converges
in the continuous limit to the operator H. This can be
demonstrated by looking at

fPðxÞgr ¼
XN�1

s¼0

Prsx½s�,

0prpN � 1 ¼
XN�1

s¼0

XðN�1Þ=2

m¼�ðN�1Þ=2

ffiffiffiffiffiffi
2p
N

r
m

N
exp j

2p
N

mðr � sÞ

� �
x½s�.

To enable the passage to the continuous limit, we can
define the following quantities

q ¼

ffiffiffiffiffiffi
2p
N

r
r; ~q ¼

ffiffiffiffiffiffi
2p
N

r
s,

p ¼

ffiffiffiffiffiffi
2p
N

r
m) dp ¼ dq ¼ d ~q ¼

ffiffiffiffiffiffi
2p
N

r
.

Consequently, we can write the sum as

lim
N!1
fPxgr ¼

XN�1

s¼0

XðN�1Þ=2

m¼�ðN�1Þ=2

ffiffiffiffiffiffi
2p
N

r
m

N
exp j

2p
N

mðr � sÞ

� �
x½s�

¼

Z 1
�1

d ~q
1

2p

Z 1
�1

p expðjpðq� ~qÞÞdp xð ~qÞ

¼ � j
d

dq
xðqÞ.

Therefore, the commuting matrix T1 in the limit can be
written as

lim
N!1

Tx ¼ lim
N!1
ðP2
þ Q 2

ÞxðqÞ ¼ �
d2

dq2
xðqÞ þ q2xðqÞ ¼ �HðxðqÞÞ.

If we now consider the commutator that constitutes the
second part of the commuting matrix T2 we have

lim
N!1
½Q ;P�x ¼ ½q̂; p̂�xðqÞ ¼ ðq̂p̂� p̂q̂ÞxðqÞ

¼ q̂ �j
dx

dq

� �
þ j

d

dq
ðqxðqÞÞ ¼ jxðqÞ. (11)

This in turn implies that the commutator in the limit
converges4 to a multiple of identity, a result that is
consistent with Eq. (1). Since the form of T2 contains both
T1 and C1 the commuting matrix T2 also converges to H.

The ideal form of the discrete Hermite operator would
be the logarithm of the CDFT [16]:

T ¼ �
4j

p
log W ¼ �

4j

p
V log KVH.

The eigenvalue spectrum of this operator would be exactly
the integer valued and uniformly spaced eigenvalue
spectrum that we seek. However, the orthogonal eigen-
vectors needed to compute the matrix logarithm could
still be any of the existing ones and consequently this
approach is not unique either. Our approach here may be
viewed as the best quadratic approximation to the DFT
logarithm using a fixed basis. The commuting matrix T2,
that is quadratic in Q and P and containing both the terms
T1 and C1 that commute with the CDFT, constitutes a
unique and computable approximation to the logarithm of
the CDFT in that: (a) it converges to H in the limit, (b) its
orthogonal eigenvectors resemble sampled versions of
G–H functions, (c) its eigenvalue spectrum is close to that
of H and the logarithm of the DFT.

4. The off-centered case

Eqs. (6) and (7) form the backbone of the approach for
generating the eigenvectors of the CDFT. However, these
equations do not hold for the conventional DFT. Specifi-
cally, here the cyclic flip matrix is given by

W2
¼

1 0

0T JN�1

" #
aJN ,

where JN refers to the exchange matrix of size N � N. If we
further explore the implications of Eq. (7) when W is the
conventional DFT, we obtain the relation

fQgðð�mÞÞN ;ðð�nÞÞN
¼ �fQgmn; 0pm;npðN � 1Þ, (12)

where the notation ðð:ÞÞN denotes the modulo-N repre-
sentation. This condition needs to be met for the earlier
framework to be applied. Obviously, it is not met with the
regular DFT and the centered position operator Q defined
before in the case of the CDFT. If we further restrict
ourselves to a diagonal Q then Eq. (12) becomes

q½r� ¼ �q½ðð�rÞÞN�; 1prpðN � 1Þ; q½0� ¼ 0.

The implication of Eq. (7) in the context of the DFT and the
cyclic flip matrix is that the ideal position operator Q
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4 Convergence here is in the sense of the action of the matrices on a

vector that converges to a operator acting on a function. This is

consistent with the quantum-mechanical notion that it is the action of

an operator and not the operator itself that is the observable.
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needs to be cyclo-centro-anti-symmetric or W2-anti-sym-
metric (see the Appendix). The implication of Eq. (6) on
the other hand is that the matrix Q 2 needs to be cyclo-

centrosymmetric (CCS). Our task there is therefore to
define a modified position operator ~Q that satisfies
Eq. (12). The only possible solution for a diagonal ~Q
matrix in this case requires the main diagonal to be anti-
symmetric after the exclusion of the first element and this
would also produce a degenerate position state when N is
even, i.e., when q½N=2þ 1� ¼ 0. This degenerate position
state will manifest as a eigenvalue degeneracy in the
commuting matrix when N is even. To remedy this
degeneracy we present two approaches that involve
modifying the position operator. In the first approach we
still require Eq. (12) be satisfied, while in the second
approach we only require Eq. (6) to hold.

(1) First approach: Let us now define the modified
position matrix Q as

~Q ¼
0 a

aT Q N�1

 !
, (13)

where Q N�1 is the position matrix of order ðN � 1Þ defined
for the CDFT and a is any anti-symmetric vector. The
discrete equivalent of the momentum operator is then
given by ~P ¼W ~Q WH, where W now denotes the conven-
tional DFT matrix. It is easily seen from Eq. (13) and
the partitioned form of the cyclic flip matrix that both
the conditions that are required of the ideal position
operator are met because the sub-matrices JN�1 and Q N�1

satisfy the same relations seen in the case of the
CDFT. The commutator of these matrices is given by
~C ¼ ½ ~Q ; ~P� ¼ ~Q ~P� ~P ~Q . The version of the commuting
matrix for the conventional DFT is given by

~T1 ¼
~P

2
þ ~Q

2
. (14)

Similar to the case of the CDFT, the commuting matrix ~T1

is K-centrosymmetric matrix with K ¼W2 (see the
Appendix) since Eq. (6) is satisfied. Consequently, the
eigenvectors that result from this matrix will not have the
symmetries present in the G–H functions or the eigen-
vectors from the CDFT. The eigenvectors in particular
are conjugate symmetric or anti-symmetric as seen in
the Appendix. In addition the eigenvalue spectrum of the
commutator exhibits deviations from the eigenvalue
spectrum seen in the case of the CDFT at two regions as
seen in Fig. 4(a) for the choice of a ¼ a1 ¼ 0, due to the
eigenvalue degeneracy. Another choice for the asymmetric
vector

a2 ¼ diagðQ N�1Þ ¼ ½�ðN � 2Þ=2; . . . ; ðN � 2Þ=2�T (15)

removes the eigenvalue deviations in the linear region
while increasing the deviation at the end as seen in
Fig. 4(b).

As with the CDFT, the operator ~P
2
þ ~Q

2
þ j½ ~Q ; ~P� has

eigenvalue degeneracy. To furnish a non-degenerate
commuting matrix we combine the correction factors
from both the CDFT in Eq. (8) and the DFT in Eq. (13) to

define a modified position operator:

f ~Q agmn ¼

f ~Q gmn; m ¼ n;

ja2; m ¼ 1;n ¼ 2;3; . . . ;N; ~Pa ¼W ~Q aWH;

~Ca ¼ ½
~Q a;

~Pa�;

�ja2; n ¼ 1;m ¼ 2;3; . . . ;N;

8>>>><
>>>>:

(16)

where a2 is the asymmetric vector defined in Eq. (15). The
corresponding commuting matrix is

~T2 ¼
~Q

2

a þ
~P

2

a þ j½ ~Q a;
~Pa� þ I. (17)

This generalized commuting matrix, as with the CDFT, is
also W2-symmetric and consequently can furnish ortho-
gonal conjugate symmetric or anti-symmetric eigenvec-
tors as shown in the Appendix. Fig. 5(a) depicts the
eigenvalue spectrum of the matrix ~T2 for N ¼ 128. Note
that the deviation from the linear spectrum has been
pushed to the end where the deviation now is larger than
that seen for the commutator T1.

(2) Second approach: Suppose we relax the require-
ments so that the modified position operator just needs to
satisfy Eq. (6). Then we can remedy the degeneracy by
choosing a modified position operator of the form

~Q ¼

ffiffiffiffiffiffi
2p
N

r !
W2 diagð0;1;2; . . . ;N � 1Þ ¼

ffiffiffiffiffiffi
2p
N

r
0 0

0T JN�1K

 !
,

(18)

where K ¼ diagð1;2;3; . . . ;N � 1Þ. It is easy to see that Eq.
(6) is met with this form of the position operator:

JN�1KJN�1K ¼ KJN�1KJN�1

and consequently the corresponding commuting matrix

~T1 ¼ NpI� ~P
2
� ~Q

2
(19)

commutes with the DFT matrix. The eigenvalues of the
commutator are exactly the same as those seen for the
CDFT as seen in Fig. 4(c). The eigenvectors of this
commutator are K-symmetric or K-anti-symmetric with
K ¼W2 as described in the Appendix, where we outline
an algorithm to construct K-symmetric and K-anti-
symmetric eigenvectors from the even and odd eigen-
subspaces of a generalized K-symmetric matrix. The
symmetric involution matrix K used in the formulation
of the K-symmetric matrix framework for computing the
eigenvectors of the commutator can be any cyclic
permutation matrix that commutes with the DFT and
does not need to be W2 [17].

5. Discrete fractional Fourier analysis

After obtaining an orthogonal basis of DFT eigenvec-
tors, we can now define a discrete fractional Fourier

transform (DFRFT) using the eigenvectors of the commut-
ing matrices T1 or T2 via [18]

Aa ¼W2a=p
¼ VK2a=pVH. (20)

Furthermore, if we discretize the angle so that it can take
only rational values, i.e., ar ¼ ð2p=NÞr; r ¼ 0;1;2;
. . . ; ðN � 1Þ, we obtain a multiangle chirp-rate/frequency
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representation for the DFRFT computed via the FFT [19]:

Xr½k� ¼
XN�1

p¼0

vkp

XN�1

n¼0

x½n�vnpe�jð2p=NÞpr , (21)

where the notation vkp denotes the pth component of the
kth CDFT eigenvector. This transform, referred to as the
multiangle centered discrete fractional Fourier transform

(MA-CDFRFT), computed using the eigenvectors derived
from the Grünbaum matrix was shown to be able to
concentrate a chirp signal in a few transform coefficients
[19]. We now use the same multiangle transform
framework but instead use the CDFT eigenvectors derived
from T1.

Consider the example in Fig. 6(a) that describes a
monocomponent cosinusoidal chirp signal with zero
average frequency of the form: x½n� ¼ cosðcrðn� ðN �

1Þ=2Þ2Þ; 0pnpN � 1; where cr ¼ 2p=2048 ¼ 0:003068
is the chirp rate of the signal. Fig. 6(b) depicts the MA-
CDFRFT spectrum of the signal for N ¼ 512 using a half-
spectral zoom implemented via the chirp Zee transform

(CZT) version of the FFT [20], thereby enabling a zoom into
a desired region of the MA-CDFRFT spectrum. The two
distinct peaks observed in the MA-CDFRFT spectrum
correspond to identical but opposite chirp rates present
in the real signal. From the location of the peaks at
r ¼ 180;332, and using the approach presented in [19], we
can estimate the chirp rates of the peaks to be ĉr ¼

�0:003088 that are very close to the actual chirp rates.
The eigenvectors derived from the proposed approach
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together with the MA-CDFRFT framework are therefore a
powerful tool for multicomponent chirp demodulation
and for cochannel signal separation and demodulation as
seen with the Grünbaum eigenvectors [21].

6. Conclusions

We have presented in this paper a commuting matrix
framework, utilizing concepts from quantum mechanics
in finite dimensions, for both the centered and conven-
tional DFT. This framework is simultaneously able to
furnish a fully orthogonal basis of eigenvectors for both
versions of the DFT and a discrete computable version of
the G–H differential operator. We have shown that the

commuting matrices developed converge in the limit of a
large matrix size to the G–H operator. Furthermore, their
quadratic form is analogous to the Hamiltonian of the
conventional harmonic oscillator. The proposed commut-
ing matrices were shown to produce a distinct linear
spectrum with a uniform eigenvalue spacing (except at
the end due to truncation effects), analogous to what is
seen with the G–H operator. We have demonstrated that
the eigenvectors produced from this approach possess the
same properties of concentrating chirp signals that
the Harper or Grünbaum matrix approaches have. The
proposed commuting matrices can also be interpreted as
discrete versions of the logarithm of the DFT for a
specified basis of eigenvectors.

Appendix A

The algorithm for generating the eigenvectors for both
the DFT and and CDFT can be formulated as special cases
of the eigenvalue problem for the broader class of
generalized centrosymmetric matrices [13]. A matrix
M 2 RN�N is said to be CCS or centrosymmetric with
respect to K ¼W2 if

KMK ¼M or W2MW2
¼M.

Correspondingly, a matrix M is cyclo-centro-anti-sym-

metric or anti-symmetric with respect to K ¼W2 if

KMK ¼ �M or W2MW2
¼ �M.

More specifically in terms of its elements:
fMgðð�iÞÞN ;ðð�jÞÞN

¼ �fMgij; 0pi; jpðN � 1Þ. If the matrix M
is symmetric and CCS then we can express it in block
matrix form as

M ¼

k cT cTJM

c RM SM

JMc JMSMJM JMRMJM

0
B@

1
CA
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for N ¼ 2M þ 1 and

M ¼

k1 cT
1 k2 cT

1JL

c1 RL c2 SL

k2 cT
2 k3 cT

2JL

JLc1 JLSLJL JLc2 JLRLJL

0
BBBB@

1
CCCCA (22)

for N ¼ 2Lþ 2 , where R and S are symmetric sub-
matrices of the appropriate order. It is easy to show that
the orthogonal similarity transformation U given by

U ¼
1ffiffiffi
2
p

ffiffiffi
2
p

0 0

0 IM JM

0 JM �IM

0
BB@

1
CCA for N ¼ 2M þ 1,

U ¼
1ffiffiffi
2
p

ffiffiffi
2
p

0 0 0

0 IL 0 JL

0 0
ffiffiffi
2
p

0

0 JL 0 �IL

0
BBBBB@

1
CCCCCA for N ¼ 2Lþ 2

(23)

block diagonalizes M. The eigenvalues of the transformed
matrix D ¼ U�1MU and M are identical, while the
eigenvectors of D are related to the eigenvectors of M
through the matrix U which is further a symmetric
involution, i.e., U ¼ U�1

¼ UT. We can now furnish
orthogonal eigenvectors for M by patching together the
eigenvectors of D1 and D2. Specifically, if we solve the
smaller eigenvalue problems for when N is odd we obtain

k
ffiffiffi
2
p

cTffiffiffi
2
p

c RM þ SMJM

0
@

1
A ffiffiffi

2
p

w

u

 !
¼ l

ffiffiffi
2
p

w

u

 !
,

D2v ¼ rv.

We can construct M þ 1 K-symmetric and M K-anti-
symmetric unit-norm, orthogonal eigenvectors for M via

x ¼
1ffiffiffi
2
p

2w

u

Ju

0
B@

1
CA; y ¼

1ffiffiffi
2
p

0

Jv

�v

0
B@

1
CA. (24)

In a similar vein, for N ¼ 2Lþ 2, if we represent a general
eigenvector of the matrix D1 as ½

ffiffiffi
2
p

w1 u
ffiffiffi
2
p

w2�
T and a

general eigenvector of the matrix D2 as v, we can generate
Lþ 2 K-symmetric and L K-anti-symmetric eigenvectors
via

x ¼
1ffiffiffi
2
p

2w1

u

2w2

Ju

0
BBBB@

1
CCCCA; y ¼

1ffiffiffi
2
p

0

Jv

0

�v

0
BBB@

1
CCCA. (25)

As a special case if K ¼ J, the commutator becomes
centrosymmetric with symmetric or anti-symmetric
eigenvectors.
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