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ABSTRACT  

A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are 

motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase 

modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudo-

subspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for 

estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when 

clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield 

reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's 

frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations 

when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in 

conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined 

with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. 

We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside 

buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the 

vibrating structures that house the vibrating objects. 

 

Keywords: Vibration estimation; discrete fractional Fourier transform; extended Kalman filter; Fourier transform; 

subspace method; synthetic aperture radar; signal-to-clutter ratio  

 

1. INTRODUCTION 

Synthetic Aperture Radar (SAR) is a remote-sensing technique, typically performed with aircraft or spacecraft, which 

has advanced significantly over the past few decades [8]-[10]. Capable of high-resolution terrain images in all weather 

conditions, SAR delivers complementary and possibly otherwise unattainable information in a plethora of remote 

sensing applications. SAR transmits electromagnetic (EM) radiation to ground scenes and measures the returned signal, 

which contains information about the EM reflectivity of all objects. This active illumination feature facilitates the 

identification and classification of ground objects. 

 



 

 
 

 

In its most basic form, SAR artificially creates a significantly larger aperture while traversing a ground scene. While 

traversing the ground scene, the system periodically measures the EM reflectivity on each object. SAR Processing, i.e., 

combining the data at each collection location, provides a high-resolution image. The success of this collection technique 

depends heavily on the assumption that all targets in the ground scene are stationary during collection. The returned SAR 

signals from static targets (after pre-processing) are all stationary. More specifically, the returned SAR signals are the 

superposition of pure sinusoids. Conventional SAR image formation methods, which are based on the Fourier transform 

(FT), are able to focus the targets on their correct positions by “compressing'' the returned SAR signals to impulses 

located at the frequencies that are linearly related to the target's locations. However, since we assume all the targets are 

static during the data-collection process, SAR imagery is sensitive to any low-level target vibrations [11]-[18]. 

Specifically, target vibrations cause SAR images to contain localized artifacts, or “ghost targets,'' in the azimuthal (cross-

range) direction. This is because the vibrations introduce non-stationary phase modulation, termed the micro-Doppler 

effect [15], into the returned SAR signals. 

 

While non-stationary targets degrade the resolution and create artifacts in the image, it could be of great benefit to have a 

reliable method to determine the target's vibration characteristics remotely: specifically frequency and amplitude from 

the non-stationary phase modulated return signals. This capability could provide remote monitoring for machinery, 

unique target identifiers in defense applications, or extract activity information about concealed structures. Previously, 

the authors proposed the discrete fractional Fourier transform (DFRFT) [1] demonstrated success for estimating the 

instantaneous accelerations of vibrating objects [2]–[5]. However, in some cases this method may not yield reliable 

results when clutter (static targets) in the SAR image is strong. Simulations and experimental results show that the 

DFRFT-based vibration estimation method can yield reliable results for the signal-to-clutter ratio (SCR) > 8 dB [6].   

 

Although the SCR requirement of the DFRFT-based method is easily satisfied by appropriate SAR system design 

choices, it is still of great benefit to have the capability of estimating target vibrations in low SCR scenarios, i.e., 3 dB or 

lower. In this paper, we present two methods to handle low SCR scenarios. The first is clutter suppression using rank-

reduction and subspace methods. We incorporated these into the already existing DFRFT based method, which enhanced 

the performance in low SCR scenarios [1]. The second method depends on an entirely different collection technique, the 

along-track dual-beam SAR, also known as the monopulse (squinted) phase beam SAR. The collection geometry of 

dual-beam provides a means to remove all the clutter from the signal, since the clutter is common to both beams. We 

then apply extended Kalman filter (EKF) to determine the vibration characteristics. 

 

2. RANK-REDUCTION AND SUBSPACE METHODS 

For nonstationary signals, the continuous-time fractional Fourier transform is an incredibly powerful and extremely 

successful time–frequency analysis technique. This transform is used in a variety of applications including both optics 

and signal processing [33]. Earlier work by the authors showed the estimation of common ground-target vibrations can 

be transformed into estimating chirp parameters of the returned signal in properly sized subapertures [1].  

 

Vibration frequency estimation involves the application of the DFRFT directly to the signal of interest (SoI). 

Subsequently, using the peak-to-parameter mapping, we find the peak coordinate location, translate these peak 

coordinates into a center frequency, and estimate the chirp rate. This direct approach works well when both the SNR and 

SCR are high. However, in the presence of significant clutter, i.e., strong reflections by static targets located near the 

vibrating object, estimating the peak coordinates accurately becomes difficult. This difficulty is due to the manifestation 

of significant side lobes in the DFRFT spectrum [31]. 

 

Continuing from a previously proposed subspace approach, we use the rank-reduction and subspace method in 

conjunction with the DFRFT to perform vibration estimation in the presence of clutter. Prior application of subspace 

methods, for vibration estimation applications, implemented the crosshair technique. We place the crosshairs on top of 

the DFRFT peak. The vertical and horizontal slices of the DFRFT generated by the crosshairs are frequency variables. 

These frequency variables are transformed into time-domain quantities using the inverse DFT. We use the transformed 

slices as inputs into the various subspace methods. Ideally, the peak in the DFRFT spectrum will be a delta function, 

resulting in the subspace signals being sinusoidal. However, in the DFRFT spectrum, we only get an approximation of 

Gauss-Hermite functions in the form of DFT eigenvectors. Thus, the subspace signals will deviate from sinusoidal 

signals as depicted in Figure 1. Prior work in [2], [3] did not include rank-reduction and filtering of the subspace signals 



 

 
 

 

to remove clutter that manifests as high-frequency noise in the center-frequency and chirp-rate slices. Rank reduction 

employs correlation matrices that use just the signal subspace, thereby rejecting a great portion of the noise and clutter 

prevalent in the other subspaces [29]. Incorporating filtering and rank reduction is expected to reduce the effects of noise 

and clutter significantly, and produce enhanced peaks in the vibration spectrum in comparison to direct application of the 

DFRFT as depicted in Figure 2 and Figure 3. 

 

In the following simulations, we consider a single vibrating target oscillating at 5 Hz with a 1 mm amplitude. As for the 

received signal characteristics, we consider SNR = 30 dB and SCR = 5 dB. Using an initial sampling frequency of 3.216 

MHz, we applied a down-sampler on the data to a sampling rate of 40 KHz. We model the reflectance of the clutter 

pixels as a Gamma distribution. Figure 1 shows that simple binomial smoothing of these subspace slices reduces the 

effects of clutter and noise in the signal. In the simulations shown in Fig. 2 we add the presence of clutter to demonstrate 

our ability to isolate in the SoI due the presence of unwanted side lobes. Moreover, in Fig. 3 signal subspace methods, 

such as the principle component Blackman-Tukey (PC-BT), enable more clutter suppression via rank reduction than 

subspace methods such as the min-norm approach. 
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Figure 1. DFRFT center-frequency and chirp-rate subspace slices for a synthetic chirp depicting waveforms with clutter 

manifesting as high-frequency noise. Simple binomial smoothing of these subspace slices reduces the effects of clutter and 

noise in the signal. 

 



 

 
 

 

(a) (b) 

 
(c) 

 

  
Figure 2. Direct DFRFT estimates from real data: (a) SAR image used in the experiment, (b) acceleration estimates for SNR 

of 30 dB and SCR of 5 dB that are quite noisy, and (c) corresponding vibration spectrum depicting a peak at 2.5 Hz 

corresponding to the vibration frequency in the presence of significant clutter manifested in the form of side lobes. 
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Figure 3. Subspace estimates incorporating rank reduction on real data: (a) acceleration estimates for SNR = 30 dB and SCR 

= 5 dB, depicting a clearer picture, (b) vibration spectra for the min-norm method, depicting a sharp null at 2.5 Hz that still 

incorporates a lot of clutter in the form of side lobes, and (c) the principle component Blackman-Tukey (PC-BT) method, 

depicting a significantly sharper peak at 2.5 Hz and reduced clutter.  

3. ALONG-TRACK DUAL-BEAM SAR 

Along-track dual beam SAR differs from conventional SAR in that it has two individual SAR antennas working 

collectively in a single system. These two SAR antennas are orientated in the azimuth or cross-range direction. That is, 

they are positioned one behind the other relative to the aircraft or spacecraft’s direction of travel [28]. Each antenna will 

provide its own individual complex SAR image. Using these two separate images to make comparisons, we can detect 

changes in the ground scene between the collection times. In particular, we are using the along-track dual beam SAR to 

detect vibrations of objects. 

 

The along-track dual-beam SAR system is extremely successful in a variety of ground moving target indication (GMTI) 

applications [19]–[23]. These targets, however, usually have pure translation through the ground scene. Vibrating 

structures, however, only oscillate around a fixed point. Nevertheless, using the along-track dual-beam SAR, we mount 

two antennas at the same altitude, aligned in the direction of travel. Each individual antenna views the same ground 

scene at the same viewing location. The only collection parameter that is different is the time at which each antenna 

observes the ground scene. Therefore, the two antennas receive the same signals from clutter only with a known time 

delay, 𝜏𝐵. However, each antenna will receive a slightly different signal from a vibrating target due to the time-varying 

vibration displacements. By taking the difference of the signals collected by the two antennas, we can ideally remove the 

clutter entirely and obtain a signal modulated by the vibration dynamics in a non-linear manner. 

 



 

 
 

 

 
Figure 4. Data-collection geometry of the along-track dual-beam SAR. We define the baseline, 𝐵, as the distance between 

the fore-antenna and the aft-antenna and 𝑉𝐴 as the velocity of the collection platform. The aft-antenna collects the data from 

the same locations points the fore-antenna with a time delay of 𝜏𝐵 = 𝐵/𝑉𝐴. 

 

Quantitatively, the two signals collected by the fore-antenna and the aft-antenna, from a ground scene with a single 

vibrating target, are 

 

 𝑠1(𝜏) = 𝑑1(𝜏) +  𝑐1(𝜏) + 𝑤1(𝜏) (1) 

and 

 

 𝑠2(𝜏) = 𝑑2(𝜏) + 𝑐2(𝜏) + 𝑤2(𝜏). (2) 

 

The signals 𝑑1 and 𝑑2 represent the signal from the vibrating target,  𝑐1 and 𝑐2 represent the clutter signal, and  𝑤1 and 

𝑤2 represent the additive noise due to electronic error and quantization error. 

More precisely, 𝑑1 and 𝑑2 have the form, 

 

 𝑑1(𝜏) = 𝜎𝑣exp [−𝑗𝑘𝑦𝑦
𝑣

𝜏 − 𝑗
4𝜋

𝜆
𝑥𝑣(𝜏) + 𝑗𝜙𝑣] (3) 

and 

 

 𝑑2(𝜏 + 𝜏𝐵) = 𝜎𝑣exp [−𝑗𝑘𝑦𝑦
𝑣

𝜏 − 𝑗
4𝜋

𝜆
𝑥𝑣(𝜏 +  𝜏𝐵) + 𝑗𝜙𝑣], (4) 

 

where 𝜎𝑣is the radar cross section (RCS) of the vibrating target, 𝑦
𝑣
 is the average azimuthal position of the vibrating 

target, 𝑘𝑦 is a known scalar for a given SAR system, 𝜆 is the wavelength of the transmitted signal, 𝑥𝑣 is the 

instantaneous position of the vibrating target, and 𝜙𝑣 is the initial phase of the vibrating target. 

 

Since the clutter is the same in 𝑠1(𝜏) as that in 𝑠2(𝜏 + 𝜏𝐵), it is removed entirely by taking the difference of the two 

signals. The difference signal 𝑠(𝜏), which we define as the dual-beam SoI, is 

 

 𝑠(𝜏) =  𝑑2(𝜏 + 𝜏𝐵) - 𝑑1(𝜏) + 𝑤2(𝜏 + 𝜏𝐵) - 𝑤1(𝜏) (5) 

 

In this paper we take the noise processes, 𝑤1 and 𝑤2, to be white zero-mean circularly symmetric complex Gaussian 

noise. 

 



 

 
 

 

Since 𝜏𝐵 is typically no more than a few milliseconds in most dual-beam SAR systems, this time is significantly shorter 

than the vibrations of interest. This gives us the ability to make the following approximation 

 

 𝑥𝑣(𝜏 + 𝜏𝐵) ≈ 𝑥𝑣(𝜏) + 𝑉𝑣(𝜏)𝜏𝐵, (6) 

 

where 𝑉𝑣(𝜏) is the instantaneous vibration velocity of the target. Using this approximation and some algebraic 

manipulations,  𝑑(𝜏) is written as  

 

 
𝑑(𝜏) = 𝑑2(𝜏 + 𝜏𝐵) − 𝑑1(𝜏)  =  2𝜎𝑣(τ)sin (

2𝜋𝜏𝐵𝑉𝑣(𝜏)

𝜆
)exp [−𝑗

2𝜋

𝜆
(2𝑥𝑣(𝜏) + 𝜏𝐵𝑉𝑣(𝜏)) − 𝑗

𝜋

2
)] (7) 

 

where 

 

 𝜎𝑣(τ) = 𝜎𝑣exp [−𝑗𝑘𝑦𝑦̅𝑣𝜏 + 𝑗𝜙𝑣]. (8) 

 

Now, since the SoI, given by 

 

 𝑠(𝜏) =  𝑑(𝜏) +  𝑤2(𝜏 + 𝜏𝐵) - 𝑤1(𝜏),  (9) 

 

contains information about the instantaneous position and velocity, 𝑥𝑣(𝜏) and 𝑉𝑣(𝜏), of the vibrating target, the problem 

of estimating the vibration dynamics is a standard non-stationary signal estimation problem [24]. This creates the ability 

to use recursive estimation methods such as the Kalman filter [25]. However, the nonlinear nature of the observed signal 

model prevents us from directly applying the Kalman filter to the dual-beam SoI for vibration estimation. Nevertheless, 

we can first linearize the observed signal model at each estimate and then apply the Kalman filter. This method is 

commonly referred to as the extended Kalman filter (EKF). Although the EKF is generally sub-optimal for nonlinear 

estimation problems, it is widely used and it has been considered the de facto standard in nonlinear state estimation for 

well-defined transition models [25], [26]. We defer the full description of the EKF in this model to a later publication. 

However, listed below we show certain results using simulated data. 

 

We simulated an airborne spotlight-mode dual-antenna SAR operating in the 𝐾𝑢 band to validate the proposed method. 

A dual-beam collection geometry has an equivalent transformation to that of two distinct antennas. Thus, all 

mathematical equations formulated above are applicable to this collection technique. We note that General Atomics’ 

dual-beam SAR system is an amplitude monopulse (squinted) beam system, pointed left and right, in the azimuth 

direction, relative to the bore center. Table 1 lists the key system parameters associated with the simulation.  

 
Table 1: SAR System Parameters Used in the Simulation 

 

       PARAMETER QUANTITY 

 pixel dimension 0.33 𝑥 .33 𝑚2 

nominal slant-range 10000 𝑚 

nominal grazing angle 10° 

carrier frequency 𝑓𝑐 = 16 𝐺𝐻𝑧 

baseline 𝐵 =  10 𝑚 

sent pulse bandwidth 𝑓0  =  500 𝑀𝐻𝑧 

plane velocity 𝑉 =  250 𝑚/𝑠 

pulse-repetition frequency 900 𝐻𝑧 

 

Listed below are the preliminary results of applying the EKF to a dual-beam SAR system. 

 



 

 
 

 

  
Figure 5. Simulated SAR image containing a vibrating target in the middle with SCR = 3 dB. The vibration magnitude and 

frequency are 1mm and 5 Hz, respectively. 

 

Figure 6.  The magnitude of the dual-beam SoI with SNR = 13 dB. The vibration magnitude and frequency are 1 mm and 5 

Hz, respectively. 

.  



 

 
 

 

Figure 7. The spectrum of the magnitude of the dual-beam SoI with SNR = 13 dB. The vibration magnitude and frequency 

are 1 mm and 5 Hz, respectively. 

 

Figure 8. Estimated and true vibration velocities using the EKF-based method with SNR = 13 dB. The vibration 

magnitude and frequency are 1mm and 5 Hz, respectively. 

 

4. FUTURE ACTIVITIES 

Vibration signatures from active structures, such as buildings that contain certain machinery or generators of 

interest, combustion-based engines/vehicles and operational underground facilities, can bear vital characteristic 

signatures about these structures. We can correlate many of these signatures to nuclear proliferation activities. 

Therefore, the ability for us to reliably detect vibration signals remotely can greatly benefit proliferation detection 

missions at particular sites of interest. Combining the vibration characteristics with an overhead SAR image, we 

anticipate the use of multi-dimensional recognition analysis techniques to provide warnings of the presence of 

suspicious operational machinery concealed within buildings and other types of cover. Figure 9 shows the vibration 

histories, namely the instantaneous frequency as a function of time, of three types of common engines measured by 

accelerometers: a small diesel engine, a large diesel engine, and a turbine engine. It is worth noting the distinction in 

the frequencies and their separations present in each type of engine, as well as the transient behavior observed as we 

alter the engine speeds. It is plausible to think we can extract many features from the vibration histories, both in the 

steady state and transient modes of operation. A natural question to ask is whether we can sense these vibrations 

remotely once they are concealed inside buildings, and if so can we identify types of machinery from the 

information sensed from the buildings. 

 

Figure 9. Instantaneous frequency histories of three engines at 50% throttle measured by accelerometers: (a) small diesel, 

(b) large diesel, and (c) turbine. Note that the frequencies as well as the variations within them vary from engine to engine. 
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