
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331907863

Detection of vibrating objects in SAR images

Conference Paper · March 2019

DOI: 10.1117/12.2517555

CITATIONS

0
READS

255

6 authors, including:

Some of the authors of this publication are also working on these related projects:

SAR Vibrometry Using Discrete Fractional Fourier Analysis View project

Resolution Enhancement for Optical Nanolithography View project

Balu Santhanam

University of New Mexico

87 PUBLICATIONS   872 CITATIONS   

SEE PROFILE

Armin Walter Doerry

Sandia National Laboratories

214 PUBLICATIONS   1,266 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Francisco Pérez V. on 11 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/331907863_Detection_of_vibrating_objects_in_SAR_images?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/331907863_Detection_of_vibrating_objects_in_SAR_images?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SAR-Vibrometry-Using-Discrete-Fractional-Fourier-Analysis?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Resolution-Enhancement-for-Optical-Nanolithography?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Balu_Santhanam?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Balu_Santhanam?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-New-Mexico?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Balu_Santhanam?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Doerry?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Doerry?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sandia_National_Laboratories?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Armin-Doerry?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Perez_V?enrichId=rgreq-f4435505f7686fe37c6dc348ff5632e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMTkwNzg2MztBUzo3NDYzNjcwMzUxMzM5NTJAMTU1NDk1OTE3NjUyMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Detection of vibrating objects in SAR images
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ABSTRACT

The vibratory response of buildings and machines carries key information that can be exploited to infer their
operating conditions and to diagnose failures. Moreover, since vibration signatures observed from the exterior
surfaces of structures are intrinsically linked to the type of machinery operating inside of them, the ability to
monitor vibrations remotely can facilitate the detection and identification of the machinery. Recently, synthetic
aperture radar (SAR) has proven to be a versatile tool capable of performing vibrometry and high-precision
vibration-estimation algorithms have been developed for reconstructing surface vibration waveforms from SAR
images. However, these algorithms tend to be computationally demanding and, in addition, require knowledge of
the exact location of the object a priori. This renders their use as unpractical for exploratory applications. This
paper focuses on the detection of vibrating objects by exploiting the phase modulation that a vibration causes in
the received slow-time SAR data. Two different vibration detection schemes are investigated. The first scheme
is data-driven and utilizes features extracted with the help of the discrete fractional Fourier transform (DFrFT)
to feed a random-forest detector. The second scheme is model-based, and uses a probabilistic model of the
slow-time SAR signal, the Karhunen-Loève expansion, and a likelihood-ratio detector. The proposed detection
algorithms are tested using both simulated and real SAR data. Our results show that both detection schemes
can be used to achieve high-performance vibrating-object detectors.

Keywords: Synthetic aperture radar, vibration detection, discrete fractional Fourier transform, time-frequency
analysis, Karhunen-Loève expansion, machine-learning algorithms

1. INTRODUCTION

The vibratory response of buildings and machines carries key information that can be exploited to infer their
operating conditions and to diagnose failures. Furthermore, since vibration signatures observed from the exterior
surfaces of structures are intrinsically linked to the type of machinery operating inside of them, the ability to
monitor vibrations remotely can facilitate the detection and identification of the machinery. Recently, synthetic
aperture radar (SAR) has proven to be a versatile tool capable of performing vibrometry1,2 and many high-
precision vibration-estimation algorithms have been developed for reconstructing surface-vibration waveforms
from SAR images.1–5 However, these algorithms tend to be computationally demanding and, in addition, require
knowledge of the exact location of the object a priori. This renders their use as unpractical for exploratory
applications. The next challenge towards a complete characterization and understanding of surface vibrations
in SAR images is in the development of algorithms for detecting and classifying vibrating objects based on their
SAR signature.
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Balu Santhanam: E-mail: bsanthan@unm.edu, Telephone: +1 (505) 277-2436
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An underlying assumption when forming a SAR image is that all the targets on the ground scene are static.
Any vibrational movement of targets in the range direction in the ground scene engenders a Doppler shift,
namely a micro-Doppler shift in the returned SAR signal.6 This micro-Doppler shift causes the vibrating target
to present a smearing effect in SAR images. This smearing manifests itself as ghost images surrounding the
vibrating target at the same range line and obscuring the actual target shape.1,2 Figure 1 (b) illustrates the
difference between a static target and a vibrating target on a real SAR image generated with the Lynx SAR.
While these ghost artifacts degrade the image quality for visual target identification, they do create vibration
signatures that can be exploited for retrieving key information. By taking advantage of these signatures, it is
shown that we can perform identification, retrieve machinery status, and thus detect prohibited activities. In
general, these vibration signatures may include transient signals like chirped sinusoids, and their associated base
frequencies and chirp rates.
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Figure 1: Reconstruction of a SAR image from its range-compressed phase history. (a) The magnitude of the range-
compressed SAR phase history containing one static target and one vibrating target. The two targets are separated in
range after range compression. (b) The reconstructed SAR image using the SAR phase history in (a). The vibrations of
the target introduces ghost artifacts along the azimuth (cross-range) direction. The targets used in this experiment are
quad-corner reflectors

In the past, a method based on a cyclostationary model and the generalized likelihood ratio was proposed
to detect vibrating objects from slow-time SAR signals.7 This detection scheme was based on the correlation
between the cyclic spectral density (CSD) of a slow-time signal and a stored template of the expected CSD of
the vibration. However, as it is shown in Fig. 2, the match between a vibration CSD template and the CSD of
the input signal is susceptible to errors because the CSD of SAR signals is impulsive in nature, it is affected by
signal noise and terrain clutter, and it also changes with the vibration frequency. Furthermore, this detection
scheme is unpractical for more complex types of vibrations, such as chirped vibrations, for which the CSD does
not produce a reliable characterization.

This paper focuses on developing novel detection schemes for vibrating objects in SAR images. Two schemes
for the detection of vibrating objects from SAR signatures are developed. The first detection scheme is a
model-based data-driven approach that utilizes features extracted with the help of the discrete fractional Fourier
transform (DFRFT)8 to feed a machine-learning classifier. Model-based data-driven approaches are appealing
because they use data generated via simulation to train machine learning algorithms, supplying in this way the
need of thousands of samples that the training of these type classifiers normally require. For this purpose, SAR
data is simulated combining the signal model for the SAR slow-time history and different vibration waveforms.
Specifically, in this approach the DFRFT is applied to a reconstructed instantaneous frequency (IF) of the
slow-time SAR data. The second detection scheme is purely model-based and uses a probabilistic model of the
SAR slow-time signal, the Karhunen-Loève transform (KLT),9 and a likelihood-ratio detector. The results after
testing the two detection schemes with both simulated and real SAR data show that both detection schemes can
be used to achieve high-performance vibrating-object detectors.
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Figure 2: Analysis of vibrating objects in SAR images using the CSD. (a) SAR image containing a vibrating point-object
exhibiting a 1.5mm, 15Hz simple sinusoidal vibration. (b) SAR image containing the same object as in (a) with additive
clutter and noise at SCR=10dB and SNR=10dB. (c) SAR image containing the same object as in (a) exhibiting also a
chirp acceleration at 1Hz/s. (d), (e), (f) are the CSD planes of the corresponding slow-time signals at range 65 of (a), (b)
and (c), respectively. The SAR images were generated via simulation using the signal model described in Sec. 2.

2. SIGNAL MODEL

The small range perturbation of the vibrating target modulates the collected SAR phase history. Consider a
spotlight-mode SAR whose transmitted pulse is a chirp signal, with carrier frequency and the chirp rate fc and
K, respectively. Each returned SAR pulse is demodulated by the transmitted pulse delayed appropriately by
the round-trip time to the center of the illuminated patch. A demodulated pulse can be written as [10, Ch. 1]

r(t) =
∑
i

σi exp

[
− j 4π(ri − rc)

c

(
fc +K(t− 2rc

c
)

)]
, (1)

where σi is the reflectivity of the ith scatterer, c is the propagation speed of the pulse, and rc is the distance
from the patch center to the antenna. The polar-to-rectangular resampling approach is then applied to the SAR
phase history [10, Sec. 3.5] to correct for range cell migration. Autofocus is also performed at this stage. For
small vibrations, the vibration-induced phase modulation in range direction is very small;11–13 therefore, it is
ignored. Range compression is applied to the phase history to separate the scatterers in range. Figure 1 shows
the magnitude of the range-compressed SAR phase history containing one static point target and one vibrating
point target. Assuming that all scatterers at a specific range are static, the range-compressed phase history at
this specific range can be written as

s[n] =
∑
i

σi[n] exp
[
j
(
fyyin−

4πfc
c

ri + φi
)]

+ w[n], (2)



for 0 ≤ n < N−1, where n is the index of the collected returned pulses, N represents the total number of collected
returned pulses, yi is the cross-range position of the ith target, and φi represents all additional (constant) phase
terms. The imaging factor, fy, is known and used to estimate the cross-range of the target. For spotlight-mode
SAR, fy can be written as10,14

fy =
4πfc
c

V

R0fprf
, (3)

where V is the nominal speed of the SAR antenna, R0 is the distance from the patch center to the mid-aperture,
and fprf is the pulse-repetition frequency (PRF). The SAR integration time is given by TI = fprfN , and w[n] is
additive noise.
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Figure 3: Example of the slow-time signal for a static and a vibrating targets. Complex SoI simulated for a (a,b) static
target, (c,d) vibrating target. In (c,d) the target vibration induces phase modulation on the signal of (a,b). The vibration
was a sinusoidal function of amplitude 1cm and frequency 3.5Hz. The Lynx radar parameters of Table 1 and the signal
model (4) were used for generating the signals.

The signal s[n] in (2) is a stationary signal if all scatterers are static. The azimuth compression, accomplished
by applying the discrete Fourier transform (DFT) to s[n], will focus the static scatterers on the correct cross-
range positions. However, when a vibrating scatterer is present, s[n] has a non-stationary component because ri
is now a function of n for the vibrating scatterer. The cross-range yi is also changing for the vibrating scatterer.
However, because R0 is very large (tens of kilometers), fy is usually much smaller than 4πfc/c; therefore, the
phase modulation induced by time-varying yi is ignored.12,13 As such, ȳi is used to denote the average cross-range
position of the vibrating scatterer. For the same reason, a small change in ri causes a relatively large fluctuation
in the Doppler frequency fyyi. It is important to emphasize that azimuth compression cannot focus the vibrating
scatterer on the correct cross-range position because the DFT spectrum of the non-stationary component usually
has significant side lobes.6 Figure 1 (b) shows the reconstructed SAR image by applying azimuth compression to
the phase history as shown in Fig. 1 (a). The side lobes near the vibration target are commonly referred to as the
ghost targets.6 The vibration-induced phase modulation is referred to as the micro-Doppler effect .13 Analysis
tools other than the DFT are required to estimate and characterize vibrations and non-stationary targets in
general.

The signal of interest (SoI) is defined as the slow-time signal (range line) in the range-compressed phase



history containing vibrating targets. Figure 1 (a) shows the magnitude of the SoI of both a static target and a
vibrating target, displayed in a range-compressed phase history image. Figure 3 shows the SoI of a static target
and a vibrating target displayed as functions of the slow time.

When a vibrating scatterer is well-separated from other scatterers in range, which may be possible by choosing
a proper data collection orientation, the SoI can be written as

s[n] = σ[n] exp
[
j
(
fy ȳn−

4πfc
c

rd[n] + φ
)]

+ w[n] (4)

for 0 ≤ n < N − 1.

All the simulations of SAR signals performed in this paper make use of 4 in conjunction with the Lynx radar
parameters of Table 1.

Table 1: SAR system parameters for simulations. The paremeters were extracted from SAR images generated with the
Lynx radar oeprating at 1ft. resolution.

Parameter Quantity
Pixel dimension 0.25× 0.25m2

Nominal resolution 0.3× 0.3m2

Carrier frequency fc = 16GHz
Slant range R0 = 10Km

Plane velocity V = 100m/s
Effective pulse-repetition frequency fprf = 450Hz

Number of collected pulses N = 1024
SNR 30dB
SCR 30dB

3. VIBRATION DETECTION: BINARY HYPOTHESIS TESTING PROBLEM

In the signal model for the SAR SOI (4), the term rd[n] is the projection of the instantaneous position of the
target onto the line of sight from the target to the SAR. Hence, when the target is static, the term rd[n] is
a constant for all slow-time index n, but when the target is vibrating, rd[n] is the projection of the vibration
displacement and, therefore, it varies over time. The only exception to this is when the vibration is unidirectional
and it occurs parallel to the flight path of the sensor. This will cause the slow-time signal of the vibrating object
to be identically as the slow-time signal of a static object. Nevertheless, this will not be considered as a
concern because when imaging a site using an airborne SAR system, multiple passes from different azimuthal
angles can be performed in order to ensure capturing micro-Doppler modulation of vibrating objects. Therefore,
in consideration of the signal model (4) a binary hypothesis-testing problem is defined as follows. The null
hypothesis, H0, represents the case in which the slow-time signal, s[n], contains the return s0[n] from a static
object; and the alternative hypothesis, H1, represents the case in which the slow-time signal, s[n], contains the
return s1[n] from a vibrating object. In this formulation, it will be assumed that rd[n] is a pure sinusoidal
function. Also, without loss of generality, the constant phase terms in the signal model can be combined into a
single one. Then, the hypotheses for a point object in a SAR image can be stated as follows:

H0 : s[n] = s0[n] + w[n] = σ exp
(
jfy ȳn+ jφ

)
+ w[n],

H1 : s[n] = s1[n] + w[n] = σ exp
(
jfy ȳn+ jφ+ jx[n]

)
+ w[n],

(5)

where x[n] = 4πfc
c rd[n] and it is been assumed that the reflectivity of the target σ does not change for 0 ≤ n <

N − 1. Since in a SAR image the slow-time signal at a given range position consists of a total of N samples, the



hypothesis-testing problem can be restated in the following vector form

H0 : s =
[
s[0], . . . , s[N − 1]

]T
= s0 + w =

 s0[0]
...

s0[N − 1]

+

 w[0]
...

w[N − 1]

 ,
vs.

H1 : s =
[
s[0], . . . , s[N − 1]

]T
= s1 + w =

 s1[0]
...

s1[N − 1]

+

 w[0]
...

w[N − 1]

 .
(6)

Therefore, given a slow-time vector s =
[
s[0], . . . , s[N−1]

]T
from a SAR image, the ultimate goal is to determine

if s belongs either to H0 or H1.

4. VIBRATION DETECTION SCHEME BASED ON A RANDOM FOREST AND
THE DFRFT

This detection scheme is a model-based data-driven approach for classifying vibration signatures in SAR images.
Model-based data-driven approaches are appealing because they use data generated via simulation to train
machine learning algorithms, supplying in this way the need of thousands of samples that the training of these
type classifiers normally require. For this purpose, SAR data is simulated combining the signal model for the
SAR slow-time history (4) and different vibration waveforms.

The feature extraction process make use of the smoothed pseudo Wigner–Ville time-frequency distribution
(SPWVTFD) and the DFRFT. First, in order to reconstruct the IF of the slow-time signal, the SPWVTFD is

applied to the vector s =
[
s[0], . . . , s[N − 1]

]T
consisting of N samples of the slow-time signal at given range

coordinate of the SAR image. The SPWVTFD is a bilinear time-frequency transform designed to reduce the
cross-term interference of the Wigner-Ville time-frequency distribution.13,15 Similarly to a Fourier spectrogram,
the SPWVTFD does not yield a direct, quantitative interpretation of IF of the signal but instead it produces
a graphical illustration of it, which must be further interpreted and analyzed if multiple frequencies or non-
stationary frequencies are present in the vibration. A more detailed description of the SPWVTFD is given
in.13,15 Nevertheless, here it is assumed that the instantaneous position of vibration can be recovered from the
SPWVTFD of the SAR slow-time signal by comparing its magnitude with a threshold. Once an estimation
of the vibration waveform is obtained, then the DFRFT is applied to characterize the vibration in terms of
number of components, center-frequency and chirp-rate of each component. The DFRFT, or more specifically
the multi-angle centered-discrete fractional Fourier transform (MA-CDFRFT)8 is a parametric extension of the
centered-DFT that describes the magnitude and phase of signals consisting in sinusoids of given frequency and
chirp-rate. A more detailed description of the MA-CDFRFT is given in.16–18 Even though the traditional DFT
is sufficient for characterizing simple sinusoidal vibrations, the use of the DFRFT has the advantage that this
same approach can be used for more complex type of vibration, such as chirped vibrations, without the need
of changing the feature extraction process. Finally, the feature extraction process concludes by also computing
the kurtosis, variance, energy and histogram of the vibration waveform recovered via SPWVTFD. Algorithm 1
summarizes the feature extraction process of this detection scheme and Fig. 4 illustrates the feature extraction
process step by step.

The selected machine-learning architecture is a random-forest classifier (RFC).19 This RFC averages the
predictions of multiple decision trees on random subsets of the feature space and it produces a non-linear
division of the feature space. The RFC is trained using a 3-fold procedure with stratification and no further
hyperparameter tuning. Specifically, this RFC corresponds to the implementation available in the Tensorflow
library for Python.20
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Figure 4: Feature extraction using the SPWVTFD and the DFRFT. (a) SPWVTFD of a SAR signal generated from a
object exhibiting a chirp vibration. (b) IF recovered from (a) by thresholding. (c) Normalized histogram of (b) using 32
bins. (d) Magnitude plane of the 512-points DFRFT of (b).

Algorithm 1 Feature extraction using the SPWVTFD and the DFRFT.

1: s =
[
s[0], . . . , s[N − 1]

]T
: a slow-time vector from a SAR image.

2: Apply the SPWVTFD to s to generate a Nb-frequency-bins spectrogram of the slow-time signal (e.g. Nb=32).

3: The IF curve (vibration waveform) of the slow-time signal is then extracted from the previous spectrogram
using thresholding.

4: Compute the kurtosis and variance and energy on the extracted IF curve.
5: Compute the Nb-bins histogram of the IF.
6: Apply the DFRFT to the IF and store the information of the Nc-most prominent peaks of magnitude plane

(e.g. Nc=6). Specifically, the magnitude of each peak, its center frequency and its chirp-rate value are
considered.

7: Finally, the features computed in 4), 5) and 6) are concatenated in a single feature vector of dimension
N = Nb + 3 + 3Nc (e.g. 53× 1, for Nb=32 and Nc=6).

5. VIBRATION DETECTION SCHEME BASED ON PROBABILISTIC MODEL OF
THE SAR SLOW-TIME SIGNAL AND THE KLT

5.1 Probabilistic model for the SAR slow-time signal

Recall the hypothesis testing problem (5) and (6) for an N -samples slow-time vector, where s0[n] is the part of
the slow-time signal that corresponds to the return of a static object, s1[n] is the part of the slow-time signal



that corresponds to the return of a vibrating object, and w[n] is an additive term to represent noise and clutter.
Due to physical properties of a SAR, there are natural constraints for the variables σ, φ, ȳ for an object within
a SAR image. Similarly, due the limitations of a SAR a vibration sensor,1 some constraints also applies to the
vibration waveform (instantaneous position) x[n], 0 ≤ n ≤ N − 1. In light of this limitations, consider the
following probabilistic model of (5) for a vibration described by a simple sinusoidal function

H0 : S[n] = S0[n] +W [n] = Σ exp
(
jfyY n+ jΦ

)
+W [n],

H1 : S[n] = S1[n] +W [n] = Σ exp
(
jfyY n+ jΦ + jX[n]

)
+W [n],

(7)

where Σ ∼ U [σmin, σmax] (the symbol “∼” means “distributed as”) is the reflectivity of the object, Y ∼ U [−yo, yo]
is its cross-range coordinate (deviation from the center of the SAR image) with yo > 0, Φ ∼ U [−π, π] is a constant
(yet random) phase term, and W [n] ∼ CN (0, σ2

w) is circularly-symmetric complex Gaussian noise, 0 ≤ n ≤ N−1.
The term X[n] = A cos(Φx + 2πnF ) is the projection of the instantaneous position of the vibrating object onto
the line of sight from the object to the SAR, where Φx ∼ U [−π, π] is a vibration phase term, F ∼ U [fmin, fmax] is
directly proportional to the vibration frequency, and A ∼ U [amin, amax] is directly proportional to the vibration
amplitude. The scaling factor for the vibration frequency is 1/fprf , and for the vibration amplitude is 4πfc

c .
It is important to recall that all the parameters that determine the distribution of these random variables
can be estimated from the SAR specifications. In the vector form of the hypothesis testing problem (6), the
random variables S[0], S[1], . . . , S[N − 1] are correlated under both hypotheses. However, the noise samples
W [0],W [1], . . . ,W [N − 1] are considered to be independent and identically distributed.

5.2 Karhunen-Loève expansion

The Karhunen-Loève (KL) expansion allows one to decorrelate the components of the slow-time vector S, there-
fore, it allows one to work with simpler probability density functions. Specifically, in the KL expansion the
eigenvectors of the covariance matrix of the signal capture the temporal correlation of the signal. The random-
ness of S is captured in the KL coefficients which correspond to the projections of S onto the set of eigenvectors
of the covariance matrix.

Recall the hypothesis testing problem defined in the previous section (7), where the reflectivity, phase and
position of a point object are modeled as random variables as well as the amplitude, frequency and phase of the
simple sinusoidal vibration X[n] = A cos(Φx + 2πnF ). In order to construct a detection scheme based on the
KLT the first step is to compute the covariance matrices of the slow-time vector S under both hypothesis, H0

and H1. This is performed in App. A. Once the covariance matrices are determined, the next step is to obtain
the KL coefficients from the slow-time vector S using the KL expansion as described in App. B

5.3 Likelihood ratio detector based on the Karhunen-Loève expansion

Based on the previous KL expansion it is possible to define a new likelihood ratio as a decision tool for detecting
vibrating objects in SAR images. For this purpose, given a signal S from a SAR image, a likelihood ratio function
of using its KL coefficients is defined.

A slow-time signal s =
[
s[0], . . . , s[N − 1]

]T
can be expanded using the eigenvectors of the covariance matrix

computed under each hypothesis. This is, given a slow-time vector s from a SAR image, one can compute the KL
coefficients under H0, z0

k = (v0
k)∗s, and under H1, z1

k = (v1
k)∗s, for k = 0, 1, 2, . . . , N − 1. If S is assumed to be

complex-normal distributed, then resulting KL coefficients are also complex-normal distributed (and zero-mean,
because S is zero-mean) since they are a linear combination of complex-normal distributed random variables
(38). Therefore, they can be completely described by their first- and second-order statistics. Furthermore, since
the KL coefficients are independent, we have

Z0
k ∼ CN (0, λ0

k), and Z1
k ∼ CN (0, λ1

k), (8)

where λ0
k and λ1

k are the eigenvalues of cov{S} under H0 and H1, respectively. Therefore, in this case the
equivalent hypothesis testing problem can be stated as

H1 : Z = {Zk}N−1
k=0 , Zk’s independent, with Zk ∼ CN (0, λ1

k)

H0 : Z = {Zk}N−1
k=0 , Zk’s independent, with Zk ∼ CN (0, λ0

k).
(9)



Algorithm 2 Vibration detection scheme using a probabilistic model and the KL expansion.

1: Determine the distributions of Σ, Y,Φ, A, f,Φx based on radar specifications.
2: Compute the covariance matrices under hypothesis H0 and H1 using (26) and (35), respectively.
3: Perform the spectral decomposition of the two covariance matrices (36).

4: For every slow-time vector s =
[
s[0], . . . , s[N − 1]

]T
, compute {z0

k}
N−1
k=0 and {z1

k}
N−1
k=0 using (38) and the

eigenvectors of cov(S) under H0 and H1, respectively.
5: Compute the likelihood ratio (11).
6: Compare the likelihood ratio with a threshold to determine if s belongs either to H0 or H1.

Then, it is possible to define a likelihood ratio for a slow-time vector s consisting of N samples, i.e., consisting
of N KL coefficients under each hypothesis, as

L(s) =
fS(s)

∣∣
H1

fS(s)
∣∣
H0

=
fZ(z)

∣∣
H1

fZ(z)
∣∣
H0

=

∏N−1
k=0

1
πλ1

k
exp

(
− |z

1
k|

2

λ1
k

)
∏N−1
k=0

1
πλ0

k
exp

(
− |z

0
k|2
λ0
k

) , (10)

L(s) =

N−1∏
k=0

λ0
k

λ1
k

exp

(
| z0
k |2

λ0
k

− | z
1
k |2

λ1
k

)
. (11)

The latter expression defines a likelihood ratio that can be compared with a threshold in order to decide if the
slow-time signal s, via its KL coefficients {z0

k}
N−1
k=0 and {z1

k}
N−1
k=0 , corresponds to a signal generated by a vibrating

object or a static object. Algorithm 2 summarizes the steps involved in this detection scheme.

6. PERFORMANCE EVALUATION OF THE PROPOSED DETECTORS

The performance of the proposed algorithms is tested using both simulated and real SAR data. The purpose of
this study is to understand the limits of the proposed detection schemes, characterize their performance in terms
of the receiver operating characteristic (ROC) curve, and study their robustness against a mixed dataset of real
SAR data, which contains data from a collection of different vibrometry experiments.

6.1 Dataset description

Two datasets are used to study the performance of the binary detectors. A simulated dataset, consisting of SAR
images generated via simulation using the parameters of the Lynx Radar, see Table 1, is used to test the proposed
detectors. Specifically, 80% of the dataset is used for training and validation of the RFC. The remaining 20%
is used to evaluate the performance of the all the proposed detectors. A second dataset, consisting of real SAR
images collected with the Lynx Radar is also used to report the performance of the proposed detectors. The
purpose of these two datasets is, one, to study how feasible is to develop data-driven model-based detectors for
the vibrating objects in SAR images and two, to test the performance of the proposed detectors using real SAR
data. The details of each one of these two dataset is provided below.

Simulated dataset:
The vibrating objects were simulated using single-component sinusoidal vibrations with amplitude between 8mm
and 1.5cm, and frequency between 2Hz and 10Hz. For the two classes of objects, the simulated data was contam-
inated with additive noise and additive clutter at a signal-to-noise ratio (SNR) of 30dB and a signal-to-clutter
ratio (SCR) of 30dB. The noise was simulated as independent circularly symmetric complex Gaussian distributed
samples. The clutter magnitude was generated by performing circular averaging filter on uniformly random dis-
tributed clutter matrix of the same dimensions of the radar synthetic aperture. The circular averaging filter
employed a kernel of size of 3×3 pixels. The clutter phase was considered to be uniformly distributed between
−π and π. A total of 5,000 samples per class were generated. The division of samples within the dataset was
50% and 50% between static objects and vibrating objects. The objects were simulated assuming a deviation no



greater than 15% from the center of the SAR image.

Lynx dataset:
This dataset contains a total of 200 samples of SAR slow-time signals collected in previous vibrometry experi-
ments. One hundred of this samples correspond to static objects and the remaining 100 samples correspond to
vibrating objects. This dataset is heterogeneous in terms of resolution and contains SAR signatures collected
at resolutions of 1-foot and 4-inches. Also, the plane velocity parameter varies from 80m/s to 100m/s and the
effective-pulse-repetition frequency between 200Hz-500Hz. The SNR of the samples of this dataset is roughly
30dB. Similarly, the SCR of the samples of this dataset is also 30dB. The carrier frequency and R0, the distance
to the center of the patch, are as in Table 1. Quad-corner reflectors were used as study objects (point-objects).
The vibrations were induced by off-balanced motors and had frequency in the range 2Hz-6Hz and amplitude
between 2mm and 5cm. The position of the objects had a deviation less than 15% from the center of the SAR
image.

6.2 Performance metrics

The performance of the proposed vibration-detection algorithms is mainly measured using the ROC curve and its
convexity as indicators. Specifically, the ROC curve reports how well a detector performs in terms of detection
ratio vs false-alarm ratio. The ROC curve, in the case of the RFC, is computed by recording the performance
while moving boundaries in the feature space and, in the case of the likelihoodratio-based probabilistic detectors,
by increasing and decreasing the threshold. The convexity of the ROC curve is quantified by the area under the
ROC curve (AUROCC). In addition, the feature usage in the construction of the random forest classifier is also
analyzed for studying the suitability of the feature extraction process proposed in Sec. 4.

6.3 Performance evaluation

The performance evaluation of the proposed detectors is presented in Fig. 5 and Table 2. As can be observed, the
performance of the RFC is slightly higher than the performance of the probabilistic detector on the simulated
dataset. The reason behind this is likely to be a slight overfitting of the data. On the Lynx dataset the
performance of both detectors drops about 0.076 to 0.191 in terms of the AUROCC and the probabilistic detector
is the one that achieves the highest performance with a AUROCC of 0.899. This indicates that among the two
detection algorithms, the probabilistic detectors tend to be more robust against modeling errors in the data.
This observation is consistent with the fact that the noise was modeled in the formulation of the probabilistic
detectors while the other approach only counts with the time-frequency smoothing of the SPWVTFD. For
example, on the Lynx dataset for a false-alarm ratio of 10%, the RFC achieves a true positive rate of 50% and
the probabilistic detector 75%. The mismatches in performance reported in the two datasets may be attributed
to several modeling errors including but not limited to: (i) Not perfect radar cross-section modeling, since the
objects contained in the Lynx dataset are quad-corner reflectors and not ideal point-objects; (ii) variations
of radar parameters across the Lynx dataset, since the Lynx dataset contains data from different vibrometry
experiments collected at different PRF and resolution.

Table 2: Area under the ROC curve of the proposed detectors for the binary detection problem.

Classifier Simulated dataset Lynx dataset
RFC 0.999 0.808

Prob. detector 0.975 0.899
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Figure 5: ROC of the MLAs for the binary detection problem. (a) Performance evaluation on the simulated dataset. (b)
Performance evaluation on the Lynx dataset.

Finally, when analyzing the feature usage in the construction of the RFC, Fig. 6, it can be noted that the
information contained in the peaks of the DFrFT plane are the most relevant features for classifying IF curves of
slow-time history data (features #36-53). The central part of the histogram also contributes with useful features
(features #10-20, the histogram range from feature #1 to #32) and, among the statistics contained in the feature
vector, only the energy of the signal, which is also the variance for zero-mean signals, contributes with useful
information (feature #35).
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Figure 6: Feature usage of the constructed Random Forest classifier for binary classification problem. The features #1-32
correspond to histogram values. The features #33-35 are statistics. The features #36-53 are the relative magnitude,
frequency index and chirp rate index of the 6 highest peaks in the DFrFT plane. The feature were obtained from the IF
of the SAR signal following the procedure described in Alg. 1

7. CONCLUSIONS

In this paper, two different schemes for the detection of vibrating objects in SAR images have been developed
and tested. The first detection scheme is a model-based data-driven approach that utilizes features extracted
with the help of the DFRFT to feed a machine-learning classifier. The second detection scheme is purely model-
based and uses a probabilistic model of the SAR slow-time signal, the KLT, and a likelihood-ratio detector.
The results show that, after testing the two detection schemes with both simulated and real SAR data, the two
detection schemes can be used to achieve high-performance vibrating-object detectors. These results are key
because, one the one hand, they validate our models and the fact that it is feasible to train a machine-learning
algorithm with simulated data generated via proper modeling and, on the other hand, they show that the IF of



the SAR SoI is a sufficient statistic for the detection of vibrating objects. Among the two implemented detectors
we noticed that the data-driven one achieves a higher performance when there are no outliers. However, in the
opposite case, the probabilistic detector is much more robust. Since surface vibrations are intrinsically linked
to the vibrating source that generates them, the proposed techniques may enable one to detect and characterize
concealed vibrating objects.

In the future, this work will be extended for performing m-ary detection (i.e., classification) of vibrational sig-
natures retrieved from SAR images considering not only stationary sinusoidal waveforms, but also non-stationary
vibrational signals such as chirped sinusoids. Also, the performance of the proposed detectors will be studied in
the presence of clutter and noise at different intensity levels. In addition, we will incorporate the Hankel rank
reduction (HRR) method5,21–23 to remove clutter from the data as a pre-processing step.

APPENDIX A. EXPRESSIONS FOR THE COVARIANCE MATRIX OF THE
SIGNAL OF INTEREST

For this purpose, recall that the hypothesis testing problem can be written in vector form as in (6). Under
hypothesis H0 the slow-time vector S = S0 + W. Thus, the mean value (expected value) of S is given by

E{S} = E{
[
S[0], . . . , S[N − 1]

]T } =
[
E{S[0]}, . . . , E{S[N − 1]}

]T
=

[
E{S0[0]}, . . . , E{S0[N − 1]}

]T
,

(12)

where

E{S0[n]} =

∫
Σ,Φ,Y

σ exp
(
jfyn+ jφ

)
fΣ,Φ,Y (σ, φ, y)d(σ, φ, y), 0 ≤ n ≤ N − 1. (13)

Since Σ, Φ and Y are independent random variables with uniform distributions, then

E{S0[n]} =
1

σmax − σmin
1

2yo

1

2π

∫ yo

−yo

∫ σmax

σmin

∫ π

−π
σ exp

(
jfyn+ jφ

)
dφdσdy. (14)

Note that the integral is zero because ∫ π

−π
σ exp

(
jfyn+ jφ

)
dφ = 0, (15)

then, E{S0[n]} = 0, 0 ≤ n ≤ N − 1, and therefore

E{S} = 0N×1. (16)

Since S is zero-mean, the auto-covariance of S is given by

cov{S} = E{SS∗}, (17)

where the symbol “ ∗ ” represents the conjugate transpose.

cov{S} = E{(S0 + W)(S0 + W)∗},
= E{S0S

∗
0}+ E{S0W

∗}+ E{WS∗0}+ E{WW∗},
= E{S0S

∗
0}+ E{WW∗},

(18)

because E{W} = 0N×1, and S0 and W are independent. The value for the entry in the n-th position of the
diagonal of the covariance matrix cov{S} is given by

cov{S[n], S[n]} = E{S0[n]S∗0 [n]}+ E{W [n]W ∗[n]} = E{| S0[n] |2}+ E{|W [n] |2}, (19)



where E{|W [n] |2} = σ2
w and

E{| S0[n] |2} = E{| Σ exp
(
jfyY n+ jΦ

)
|2} = E{| Σ |2| exp

(
jfyY n+ jΦ

)
|2}

= E{| Σ |2} (20)

E{| Σ |2} = 1
σmax−σmin

∫ σmax

σmin

σ2dσ

= 1
3

(
σ2
max + σmaxσmin + σ2

min

)
=: 1

3kσ

(21)

Hence, cov{S[n], S[n]} = 1
3kσ + σ2

w. The value for off-diagonal entries of cov{S} are given by

cov{S[n], S[k]} = E{S0[n]S∗0 [k]}+ E{W [n]W ∗[k]} = E{S0[n]S∗0 [k]}, (22)

because the clutter-noise samples are independent.

cov{S[n], S[k]} = E{S0[n]S∗0 [k]}
= E{

(
Σ exp

(
jfyY n+ jΦ

))(
Σ exp

(
jfyY k + jΦ

))∗}
= E{| Σ |2}E{exp

(
jfyY (n− k)

)
},

(23)

because the random variables Σ, Φ and Y are independent. Since

E{exp
(
jfyY (n− k)

)
} =

1

2yo

∫ yo

−yo
exp

(
jfyy(n− k)

)
dy =

sin(yofy(n− k))

yofy(n− k)
, (24)

then

cov{S[n], S[k]} =
1

3
kσsinc(yofy(n− k)), ∀n 6= k. (25)

Finally, the (n, k)th entry of the N ×N covariance matrix of S under H0 is

cov{S[n], S[k]} =

{
1
3kσ + σ2

w, 0 ≤ n = k ≤ N − 1
1
3kσsinc(yofy(n− k)), ∀n 6= k.

(26)

Under hypothesis H1 the slow-time vector S = S1 + W. Proceeding in the same fashion as before, it is
possible to obtain that

E{S1[n]} = 0, 0 ≤ n ≤ N − 1. (27)

Therefore,
E{S} = 0N×1. (28)

Then, because S is zero-mean, the covariance matrix of S under H1 is given by

cov{S} = E{SS∗}
= E{(S1 + W)(S1 + W)∗}
= E{S1S

∗
1}+ E{S1W

∗}+ E{WS∗1}+ E{WW∗}
= E{S1S

∗
1}+ E{WW∗},

(29)

because E{W} = 0N×1 and W and S1 are independent. The value for the entry in the n-th position of the
diagonal of cov{S} is given by

cov{S[n], S[n]} = E{S1[n]S∗1 [n]}+ E{W [n]W ∗[n]}
= E{| S1[n] |2}+ E{|W [n] |2}, (30)



where E{|W [n] |2} = σ2
w and

E{| S1[n] |2} = E{| Σ exp
(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

)
|2}

= E{| Σ |2| exp
(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

)
|2}

= E{| Σ |2}
= 1

3kσ.

(31)

Hence, cov{S[n], S[n]} = 1
3kσ + σ2

w. The value for off-diagonal entries of cov{S} are given by

cov{S[n], S[k]} = E{S1[n]S∗1 [k]}+ E{W [n]W ∗[k]} = E{S1[n]S∗1 [k]}, (32)

because the clutter-noise samples are independent.

cov{S[n], S[k]} = E{S1[n]S∗1 [k]}
= E{

(
Σ exp

(
jfyY n+ jΦ + jA cos(Φx + 2πnF )

))(
Σ exp

(
jfyY k + jΦ + jA cos(Φx + 2πkF )

))∗}
= E{| Σ |2} · E{exp

(
jfyY (n− k)

)
}·

E{exp
(
jA(cos(Φx + 2πnF )− cos(Φx + 2πkF ))

)
},

(33)

because all the involved random variables are independent. The expected value gA,F,Φx = E{exp
(
jA(cos(Φx +

2πnF ) − cos(Φx + 2πkF ))
)
} does not have a closed-form solution and it has to be carried out by numerical

integration. Since

E{| Σ |2}E{exp
(
jfyY (n− k)

)
} =

1

3
kσsinc(yofy(n− k)), ∀n 6= k, (34)

the (n, k)th entry of the N ×N covariance matrix of S under H1 is given by

cov{S[n], S[k]} =

{
1
3kσ + σ2

w, 0 ≤ n = k ≤ N − 1
1
3kσsinc(yofy(n− k))gA,F,Φx

, ∀n 6= k.
(35)

Note:
(1) Both resulting covariance matrices under hypothesis H0 (26) and H1 (35) are real-valued.
(2) A similar procedure can be followed to show that the pseudo-covariance matrix of S under both hypothesis,
H0 and H1, is zero, i.e., EHj

{SST } = 0N×N , j = 0, 1.

APPENDIX B. KARHUNEN-LOÈVE EXPANSION OF THE SIGNAL OF INTEREST

The KL expansion, also known as KLT in finite dimensional spaces, provides a mechanism for converting a
discrete-time random process (i.e., random vector) into an equivalent sequence with diagonal autocovariance
matrix. This is, the samples of the equivalent sequence are statistically independent among them. Specifically,
the KL expansion of a random vector is carried out by projecting it onto the eigenvectors of its autocovariance

matrix. Given a zero-mean random vector S =
[
S[0], . . . , S[N−1]

]T
, with N×N autocovariance matrix cov{S},

the spectral decomposition of its autocovariance matrix is given by

cov{S} =

N−1∑
k=0

λkvkv
∗
k, (36)

where {λk}N−1
k=0 and {vk}N−1

k=0 are the eigenvalues and the orthonormal eigenvectors of cov{S}, respectively. The
KL expansion of S [9, pp. 274-277] is defined as

S =

N−1∑
k=0

Zkvk, (37)



where the KL coefficients are
Zk = v∗kS, 0 ≤ k ≤ N − 1. (38)

The KL expansion separates the randomness and the time-variation characteristic of the discrete-time random

process S =
[
S[0], . . . , S[N−1]

]T
. In particular, the randomness in S is summarized in the sequence Z = {Zk}N−1

k=0

while the time variation in the process is captured in the sequence of eigenvectors {vk}N−1
k=0 . In this way, the

expansion (37) combines these two properties to represent the process. Since {Zk}N−1
k=0 is determined from S via

(38) and S is determined from {Zk}N−1
k=0 via (37), the sequence Z is an equivalent observation of the discrete-time

process S. Also, note that
E{Zk} = E{v∗kS} = v∗kE{S} = 0, (39)

and
cov{Zk, Zm} = E{ZkZ∗m} = E{v∗kS×

(
v∗mS

)∗}
cov{Zk, Zm} = E{v∗kSS∗vm} = v∗kcov{S}vm.

(40)

Since v∗kvm = δk,m where δk,m is the Kronecker delta function and cov{S} is given by (36), then

cov{Zk, Zm} =

{
λk, k = m
0, k 6= m.

(41)

Hence, cov{Z} = diag
(
{λk}N−1

k=0

)
. Finally, since under both hypotheses H0 and H1 the covariance matrices are

real, then eigenvectors {vk}N−1
k=0 are real.
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