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Abstract—The Teager–Kaiser energy operator and the related
energy separation algorithm (ESA) find numerous applications in
various problems related to monocomponent AM-FM demodula-
tion. This energy-operator-based approach, however, applies only
to signals with narrowband frequency content, i.e., the information
bandwidth and frequency deviation about the carrier are small
relative to the carrier frequency. For signals with large frequency
deviation, modulation indices, this approximation fails, and the
ESA incurs large frequency/amplitude demodulation errors.
In this letter, we develop a generalized energy-operator-based
approach that uses frequency transformations derived from
multirate operations such as decimation/interpolation and hetero-
dyning. This generalized approach is shown to produce significant
reduction of the demodulation error over the conventional ESA,
particularly where the modulation index or frequency deviation
is large.

Index Terms—Energy operator, frequency and amplitude de-
modulation, heterodyning, large frequency deviations, multirate
frequency transformations, wideband signals.

I. INTRODUCTION

MONOCOMPONENT AM-FM signals are time-varying
sinusoids1 of the form

where the instantaneous frequency (IF) and instantaneous am-
plitude (IA) of the signal are given by

where is the normalized frequency message signal and
is the normalized AM information signal. Specifically, for

sinusoidal FM modulation, the IF signal is of the form

The FM modulation index of the signal in this case is defined
via the ratio . When , the FM signal is nar-
rowband, and when , it is wideband. The carrier -to-infor-
mation-bandwidth ratio (CR/IB) and carrier-to-frequency-devi-
ation ratio (CR/FD) parameters of the signal [7] are defined via
the ratios

CR
IB

CR
FD

(1)
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1This model can accomodate CPFSK, MSK, GMSK, and other forms of dig-
ital phase modulation.

These signals find numerous applications in speech processing,
radar tracking problems, and biomedical applications [7]. The
nonlinear Teager–Kaiser energy operators for continuous and
discrete cases are defined via

(2)

where the dot denotes time derivative. When the signal cor-
responds to the displacement in a simple harmonic oscillator,
the output of the energy operator corresponds to the normalized
energy of the oscillator. When the amplitude and frequency are
time-varying, this operator in either case tracks the energy of the
source that produced the signal . The conventional energy
separation algorithm (ESA) uses the Teager–Kaiser energy op-
erator to separate amplitude and frequency modulations

(3)

The IF/IA demodulation errors of the ESA can be reduced fur-
ther by applying simple binomial smoothing on the lowpass en-
ergy signals [5]. The ESA in particular is simple, efficient, and
has excellent time resolution. For the IF/IA demodulation errors
of the ESA to be small, the narrowband signal assumption must
hold, i.e., the information bandwidth and the frequency devia-
tion of the signal need to be small in comparison to the carrier
frequency. This is not the case, however, when the signal of in-
terest has a: 1) ; 2) large information bandwidth as de-
scribed in [4] and causes the ESA to incur larger IF/IA demod-
ulation errors. Therein lies the motivation for a general approach
that accommodates large frequency deviations or modulation
indices. Previous attempts at demodulating large deviation FM
signals incorporated aspects of backward-difference frequency
discrimination, frequency feedback, and nonlinear prediction
[10].

II. GENERALIZED ESA APPROACH

The basic idea behind the energy demodulation algorithm for
large frequency deviations (ESA-LDEV) is to apply frequency
transformations to convert the large deviation signal into one
with a smaller deviation. This is accomplished by compressing
the monocomponent AM-FM signal in frequency by a factor

. For sinusoidal signals, scaling the signal in time produces a
scaling in frequency, i.e., .
Specifically, when , this transformation corre-
sponds to frequency compression, and when , this corre-
sponds to a frequency expansion. While considering monocom-
ponent AM-FM signals, the IF of the compressed signal
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Fig. 1. AM-FM demodulation for wideband signals. (a) FM signal with � = 10. (b) IF estimates (solid line) of the ESA-LDEV approach for the same wideband
example with a noninteger rate change factor R = 1:96, (dashed–dotted line) the conventional ESA, and (dashed line) actual IF. (c) Energy-operator output from
(dashed line) original FM signal and (solid line) transformed signal depicting the effect of the multirate and heterodyne operations.

becomes a scaled version of the IF of the input signal and
is given by

(4)

Note that in the process the carrier frequency of the interpolated
signal has also been scaled by the same factor, and this is unde-
sirable, since we seek an input signal with a larger CR/FD ratio
for the ESA to perform well. So, we translate the interpolated
signal in frequency, i.e., frequency upshift the signal

where the operation denotes convolution and is the im-
pulse response of the bandpass filter used to extract the desired
high-frequency term in the modulation product. The resultant
signal has a reduced message bandwidth but a higher carrier
frequency of . The ESA is then applied on
this frequency upshifted signal to yield intermediate IF and IA
estimates

(5)

The final IF estimate of the proposed ESA-LDEV algorithm
is obtained by translating, scaling, and expanding the ESA IF
estimate

(6)

Frequency compression, therefore, serves the purpose of
reducing the frequency deviation of by a factor of and
compressing the IF, while still retaining the continuous phase of
the signal. Specifically, the frequency deviation and bandwidth
of the frequency scaled signal2 in the case of sinusoidal FM
modulation are given by

(7)

Frequency upshifting serves the purpose of increasing the
carrier frequency of the interpolated signal so that the CR/FD
and CR/IB parameters of the signal are increased to regimes
where the ESA performs well. Furthermore, the filtering

2The modulation index � is invariant to the above transformations.

operation used in the heterodyne step combined with the
bandwidth compression afforded by the scaling step allows for
efficient noise shaping similar to that used for quantization [6].
Specifically, the CR/FD and CR/IB parameters of are
given by

CR
FD

CR
FD

CR
IB

CR
IB

(8)

The combination of the two operations results in a signal that has
a smaller frequency deviation, larger CR/FD and CR/IB ratios,
larger SNR, and consequently produces a smaller error. For the
discrete case, the frequency compression/expansion operations
are replaced with the multirate operations of interpolation, and
decimation and the discrete versions of the ESA (DESA) [4], [5]
are employed. Both the decimation and interpolation operations
are then implemented efficiently using a polyphase decomposi-
tion for the filters.3 By combining this multirate framework with
binomial energy smoothing, significant gains can be achieved in
terms of IF demodulation error relative to the standard ESA. Al-
though the analysis done here was for sinusoidal FM, there is no
loss of generality for other types of modulation.

III. SIMULATION RESULTS

Consider the sinusoidal FM example in Fig. 1, where
CR/IB and , which falls in the wideband-FM
regime where the regular ESA fails. The large deviation
FM signal of the example is described in Fig. 1(a). The IF
estimates of the proposed ESA-LDEV approach using the
parameters , , and are shown
in Fig. 1(b) along with estimates of the standard ESA. Note
that the actual IF spans the entire range of frequencies in [0,

]. Using the DESA-1, we obtain an improvement of 21.3
dB in the normalized RMS IF demodulation error (NRMSE)
relative to the standard DESA-1 algorithm. This improvement
can be understood further upon application of (8), which

3A noninteger rate change factor R can implemented via a combination of
the decimation and interpolation operations with polyphase decompositions for
the filters and use of the Noble identities [6].
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Fig. 2. AM-FM demodulation for large frequency deviations. (a) FM signal with 32% FM and � = 0:9. (b) IF estimates of (solid line) the ESA-LDEV algorithm,
(dashed–dotted line) the conventional ESA, and (dashed line) and actual IF. (c) Energy-operator ouput of (dashed line) the original FM signal and (solid line) the
transformed signal depicting the effect of the multirate and heterodyne operations.

(a) (b) (c)

Fig. 3. Application of energy demodulation for large deviations to CPM demodulation. (a) 1-REC-CPM signal with 88% FM modulation, sampling frequency
f = 10 kHz, T = 2 ms, and SNR of 17 dB. (b) IF estimates of the proposed algorithm with (solid line) five-point median smoothing and (dashed lines) the
actual IF quantities. (c) Average probability of symbol error of the proposed algorithm for different symbol durations.

specifies a small increase in the CR/FD ratio by 1.44 but a
more significant increase in the CR/IB ratio by 14.36. The
improvement obtained with a noninteger rate change factor
can be attributed to more accurate interpolation of the original
FM signal. Fig. 1(c) describes the energy operator output of
the large modulation index and the transformed signal that is
greater than zero and exhibits fluctuations of longer duration
compared to the energy of the original FM signal.

The improvement of the ESA-LDEV approach over the con-
ventional ESA is further illustrated in the sinusoidal-FM ex-
ample in Fig. 2, where the input signal is FM modulated with
32% FM and . The Carson bandwidth4 of this signal
is given by BW , which indi-
cates significant signal energy distributed over the entire spec-
tral range. Fig. 2(b) describes the IF estimate of the proposed
ESA-LDEV procedure relative to the estimates of the regular
ESA for , , and finite-impulse response
filters of order in the polyphase implementation of
the decimator and interpolator, while a finite-impulse response

4This is defined as the difference between the frequencies where the spectral
magnitude of the signal is 1% of its maximum value [3].

bandpass filter of order (Kaiser window) was used
in the ESA-LDEV algorithm. The ESA-LDEV algorithm here
provides 24.54-dB improvement in the NMRSE when using the
DESA-1 and 33-dB improvement with DESA-2. For this ex-
ample, application of (8) specifies an increase in the CR/FD pa-
rameter by approximately 9 and an increase in the CR/IB param-
eter by approximately 10. Fig. 2(d) describes the energy-oper-
ator output of the original FM signal and the transformed signal
that exhibits fluctuations smaller in magnitude and smoother in
comparison to the energy of the original FM signal.

One plausible application of the ESA-LDEV approach is
to the problem of demodulating continuous phase modulation
(CPM) signals with large frequency deviations [1], [2], [8]. For
discussion purposes, we will adopt a rectangular pulse-shaping
function with a duration of symbol periods (L-REC) and
binary PAM symbols . If is a raised cosine
pulse, then this form of CPM is referred to as (L-RAC) CPM.
The IF signal in either case takes the form

(9)
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Fig. 4. 1-RAC-CPM demodulation. (a) 1-RAC-CPM signal with 88% FM modulation and SNR = 17 dB. (b) Normalized IF estimates of (solid line) the proposed
ESA-LDEV algorithm ) with five–part median smoothing and (dashed line) the actual IF. (c) Performance of the ESA-LDEV algorithm for different amounts of
FM modulation averaged over 100 experiments.

where is the carrier frequency and is the modulation index
of CPM. The phase deviation from the carrier phase is given by

(10)

where corresponds to the phase pulse-shaping
function. The CPM signal is then obtained via frequency modu-
lation. Using a pulse-shaping function of duration larger than a
symbol period introduces further memory into the modulation
scheme (LREC-CPM). In this letter, we will focus our attention
on the case with , i.e., (1REC-CPM). Specifically, CPM
with a rectangular pulse of one symbol duration (1-REC-CPM)
is equivalent to continuous phase frequency shift keying
(CPFSK). Another form of CPM, minimum shift keying (MSK),
is equivalent to 1-REC-CPM with , while GMSK can
be put into the CPM framework with a Gaussian pulse function
[1].

Fig. 3 describes a CPM demodulation example with 88% FM,
a sampling frequency of kHz, ms, where the
CPM signal is described in Fig. 3(a). Fig. 3(b) describes the nor-
malized IF estimate of the ESA-LDEV approach and the ac-
tual IF, which indicates significant wideband spectral content.
Fig. 3(c) describes the performance of the ESA-LDEV approach
in terms of the average symbol error probability for different
symbol periods.5 Increasing the symbol period or the sampling
frequency decreases the average symbol error probability be-
cause we are using more samples per bit. Also note that the av-
erage probability of symbol error of the ESA-LDEV approach
for BENRs above a threshold of 7–8 dB is zero.

Consider the example in Fig. 4, where the proposed algorithm
with , is applied to a 1-RAC-CPM signal
with kHz, ms, and SNR dB. The nor-
malized IF estimate of the ESA-LDEV algorithm along with
the actual IF is described in Fig. 4(b). The performance of the
ESA-LDEV approach employing eight-time binomial energy
smoothing is depicted in Fig. 4(c) for different amounts of FM

5We compare the average symbol error probability to that of binary antipodal
modulation in AWGN to study the effectiveness of the approach in inverting the
FM modulation.

modulation. A decrease in the amount of FM modulation causes
a deterioration in the performance because the signal modula-
tions are weaker.

IV. CONCLUSION

In this letter, a generalized version of the ESA that com-
bines frequency scaling transformations and heterodyning
was described. This ESA-LDEV approach combines inter-
polation/decimation and heterodyne operations with simple
binomial smoothing of the ESA energy signals to yield signif-
icant reduction in the normalized demodulation errors relative
to the regular ESA, specifically for large frequency deviations
and modulation indices. The frequency scaling operations were
implemented efficiently using a polyphase representation for
the interpolation/decimation operations. The efficacy of the
approach was demonstrated using sinusoidal FM signals and
CPM signals with large deviations and modulation indices.
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