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On the Multiangle Centered Discrete Fractional
Fourier Transform

Juan G. Vargas-Rubio and Balu Santhanam, Member, IEEE

Abstract—Existing versions of the discrete fractional Fourier
transform (DFRFT) are based on the discrete Fourier transform
(DFT). These approaches need a full basis of DFT eigenvectors
that serve as discrete versions of Hermite–Gauss functions. In this
letter, we define a DFRFT based on a centered version of the DFT
(CDFRFT) using eigenvectors derived from the Grünbaum tridi-
agonal commutor that serve as excellent discrete approximations
to the Hermite–Gauss functions. We develop a fast and efficient
way to compute the multiangle version of the CDFRFT for a
discrete set of angles using the FFT algorithm. We then show that
the associated chirp-frequency representation is a useful analysis
tool for multicomponent chirp signals.

Index Terms—Chirp rate estimation, discrete Fourier trans-
form (DFT), discrete fractional Fourier transform (DFRFT),
eigenvalues, eigenvectors, fast Fourier transform (FFT), fractional
matrix power, Hermite–Gauss functions, multicomponent chirp
signals.

I. INTRODUCTION

THE INTEREST for a discrete fractional Fourier transform
(DFRFT) has increased in recent years due to its potential

applications in digital signal processing and optics. In most of
the existing approaches, a DFRFT is obtained via the fractional
power of the discrete Fourier transform (DFT) matrix using
the expansion in [1] as

(1)

where is a matrix of eigenvectors of , and is a
diagonal matrix with the fractional powers of the eigenvalues
of . With this definition, we have the required identities for
boundary conditions

and (2)

An early effort to compute a fractional transform using (1)
resulted in the transform [1]
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i.e., a linear combination of the powers of . This transform,
however, does not behave similarly to the continuous transform
due to the multiplicities expounded in [2].

Following this work, several different discrete fractional
transforms have been proposed with the objective of replicating
the behavior of the continuous counterpart. Some approaches
toward discretization have been to directly sample the contin-
uous kernel. Since the basis functions of the continuous FRFT
are not bandlimited, this process produces aliasing, and over-
sampling translates in a nonorthogonal basis [3], [4]. Earlier
work in [5] produced an expression for a set of orthogonal
DFT eigenvectors based on sampling and aliasing of the Her-
mite–Gauss functions but does not yield a computable version,
while recent work in [6] uses the centered version of the DFT
but is based on approximating the infinite sum in [5].

Recent efforts toward finding a discrete FRFT have specif-
ically focused on the problem of finding an orthogonal set of
eigenvectors for the DFT that resemble discrete versions of the
Hermite–Gauss functions. Some approaches [7], [8] have ob-
tained a complete set based on a development of a commuting
matrix for the DFT [9]. Another approach that uses Kravchuk
functions as eigenvectors has been explored in [10]. A different
set of eigenvectors can be obtained for a centered version of a
the DFT via a tridiagonal commuting matrix [11] using earlier
work by Grünbaum [12]. We adopt the Grünbaum eigenvectors
for discussions in this letter for the reasons that a) the commutor
has been shown to converge to the Hermite–Gauss differential
operator asymptotically [12], and b) they furnish a full set of
eigenvectors for any matrix size [12], [13]. A DFRFT based on
a centered DFT matrix has been proposed in [13], and some of
its properties have been explored in [14].

The approach pursued here uses the centered DFT and has
further advantages that arise from the symmetric tridiagonal na-
ture of the commuting matrix and the uniform multiplicities of
the eigenvalues when the size of the transform is a multiple of
four, as will be explained later. There are two different aspects to
be considered when computing a DFRFT: a) computation of the
eigenvectors, which is a one time task for a given matrix size,
and b) computation of the transform itself. For the first part,
we invoke symmetries of the Grünbaum eigenvectors for im-
plementing a reduction in the number of multiplies and storage
needed, and for the second part, we reformulate the centered
DFRFT with a discrete angular parameter (MA-CDFRFT) in
a form where the computationally efficient radix-2 FFT algo-
rithms can be applied. Finally, we look at a chirp rate versus fre-
quency representation for linear chirp signals that results from
this multiangle transform.
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TABLE I
MULTIPLICITIES OF THE EIGENVALUES OF THE DFT AND THE CDFT

II. EIGENVALUES OF THE DFT AND THE CENTERED DFT

We define the centered DFT (CDFT) as the unitary matrix
with elements

(3)

This definition corresponds to the offsets
, as defined in [6], for the offset DFT. One of

the main reasons for choosing the CDFT to define a fractional
transform is the fundamental difference in the multiplicities
of its eigenvalues with respect to the regular DFT that can
be exploited to simplify the computations. From the results
obtained in [15] for the multiplicities of the eigenvalues, we can
observe that when is a multiple of four, the DFT has different
multiplicities for the four eigenvalues, while the CDFT has a
multiplicity of for each eigenvalue, as it can be observed
in Table I.

An immediate consequence of the different multiplicities of
the DFT eigenvalues when using (1) is that requires a
different implementation for the cases of being even and odd.
When using the CDFT to define a fractional transform, we have
a single definition for all values of given by

diag (4)

This permits us to define the CDFRFT matrix as

(5)

for all values of , where is the th eigenvector of the com-
muting matrix defined in [11].

III. FAST COMPUTATION OF THE MULTIANGLE CDFRFT

Using the definition given in the previous section, a method
for fast and efficient computation of this fractional transform can
be developed as follows. The elements of the CDFRFT matrix
in (5) can be expressed as

(6)

where is the th element of eigenvector . Multiplying
by the signal , we obtain the corresponding transform given
by

(7)

Rearranging the two sums, we obtain

(8)

Now, we observe that for the particular set of equally spaced
values of given by

(9)

we can rewrite the transform as

(10)

If we now define as

(11)

we observe that the transform can be interpreted as the DFT of
for each index , that is

(12)

where and . Note that the indices
of the transform have been interchanged [with respect to
(10)] to emphasize the fact that the result of each DFT com-
putation corresponds to the th element of the CDFRFT for the
whole set of angles . Expressing the computation of the trans-
form as a DFT allows the use of the FFT algorithm for efficient
computation. This reduces1 the number of computations of the
fractional transform for the entire set of uniformly spaced an-
gles from , i.e., the case for direct computation using
matrix multiplications to when using the radix-2
FFT algorithms with .

IV. EXPLOITING SYMMETRIES OF GRÜNBAUM EIGENVECTORS

In many of the approaches to define fractional transforms,
the eigenvectors have even and odd symmetries that can be ex-
ploited to further reduce the number of computations. For the
particular case of the CDFRFT, the eigenvectors that result from
the Grünbaum type of commuting matrix [11] have been shown
to have even and odd symmetries [13] similar to the eigenvec-
tors used for the DFRFT. The eigenvectors have even symmetry
for an even number of zero crossings (as defined in [8]) and odd
symmetry for an odd number of zero crossings. In this section,
we present a way to use only the first half of each of the eigen-
vectors to compute , as defined in (11). We are interested
only in the case where N is even and, in particular, when
because this is the case that can take the most advantage of the
decimation in time/frequency FFT algorithms.

When is even, we can express the elements of the eigen-
vectors as

and even (13)

1We specifically require the computation of N monodimensional transforms
each with a complexity of O(N log N).
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Fig. 1. Graphical representation ofX [r] that shows how the interpretation of
the index k changes depending on the value of index r.

and

and odd (14)

Equations (13) and (14) can be put in a single expression as

(15)

and we can rewrite (11) as

(16)

for , reducing the multiplications needed to one
half. As a final step, we apply (15) to , and we can rewrite

as

(17)

From (17), we observe that we only need to compute half the
values of , since the others can be obtained by a multiplying
by . Combined with the reduction in computations to half
the terms in the sum of (16), we get an important overall reduc-
tion in the number of computations needed to obtain 2.

V. CHIRP RATE VERSUS FREQUENCY REPRESENTATION

The resulting transform of (12) is an array that
contains the set of CDFRFTs corresponding to angles

. We call the
multiangle CDFRFT (MA-CDFRFT). It is important to observe
that corresponds to the original signal with ,
and corresponds to the CDFT of when is
a multiple of four, since in this case, . Fig. 1
shows a graphical representation of the array to illustrate
how index has different interpretations depending on the
value of [for example, when is interpreted as time
and when corresponds to the frequency]. This
representation also shows that the upper half of is a
reversed version of the lower half.3

Another observation is that the angles of the MA-CDFRFT
correspond exactly to the special angles of the DFRFTs used

2This reduction in complexity is applicable to any set of eigenvectors that
have even and odd symmetries [9], [12].

3A similar multiangled signal representation in the continuous case, where
the fractional Fourier layers are positioned radially, is described in [16].

in [17] for the computation of a DFRFT of an arbitrary angle
using a weighted summation of DFRFTs. This is important be-
cause the method of weighted summation described in [17], for

odd, can be used to compute the transform for arbitrary an-
gles of the CDFRFT without modification. The CDFRFT has
exactly the same definition and eigenvalues as the DFRFT of
odd length, with the only difference being the eigenvector set
used. The two methods can be combined to compute the CD-
FRFT of an arbitrary angle: First, compute the MA-CDFRFT,
and then, use the method in [17] to compute the transform for
any arbitrary angle.

The computation of the the MA-CDFRFT can be applied
to the estimation of the chirp rate of a single signal or a mix-
ture of signals with similar average frequencies but different
chirp rates. Defining the chirp rate as the coefficient of the
quadratic term of the phase, an example of the application of
the MA-CDFRFT to the signal

is
presented in Fig. 2. The MA-CDFRFT of the signal has three
maxima in the interval at , and

that correspond to the values of 1.1781, 1.4726,
and 1.7671, respectively. Using the formula that relates
with the chirp rate given in [18], the chirp rates result in

, and 0.0053. This is a rough estimation
of the actual chirp rates of , and , but it
is done using the index where the maximum occurs. A more
precise estimation can be obtained by interpolation or by
computing the CDFRFT for more angles.

An alternative for the method of weighted summation in [17]
when we need to compute the transform at sets of equally spaced
angles is to add a constant angle to the expression of , that is

(18)

The expression for the transform with this set of angles is

(19)

and the last factor in the sum can be taken out to have

(20)

The final step is to write it in terms of a DFT of multiplied
by a complex exponential, that is

(21)

and we can use the same for different sets of angles. Set-
ting , we can compute a second set of angles that
falls exactly in the middle of the original angles , dou-
bling the resolution in the angle with two MA-CDFRFT com-
putations. For the signal presented as an example, computing
four MA-CDFRFTs corresponding to , and

, we find that the three maxima in the interval
occur at the equivalent of , and ,
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Fig. 2. Complex signal x[n] = e +

e + e ; n = 0; . . . ; 127
shown in (a). The image in (b) is the magnitude of the MA-DFRFT applied to
the signal, and (c) shows the slices of the MA-DFRFT at r = 24; r = 30, and
r = 36 that are the indices at which we have the maxima.

which correspond to the chirp rates of , and
0.0053, respectively. As a final comment, we would like to em-
phasize the reduction in the order of computations needed for
the MA-CDFRFT. The use of the DFT in real-time applica-
tions has been possible because of the efficiency of the FFT al-
gorithm. In the case of the DFRFT, the computation proposed
using the FFT results in a similar reduction of computations that
we believe will be the key to the eventual use of DFRFT in ap-
plications that require analysis of signals in real time.

VI. CONCLUSION

We have presented a algorithm that can be applied to the
computation of any fractional transform based on a centered
DFT using symmetric eigenvectors. It provides a reduction in
the order of the computations from to
when a set of equally spaced angles is computed by formu-
lating the transform as a DFT and using the FFT algorithm. Fur-
ther reduction in the computations is achieved by exploiting the
symmetries of the eigenvectors. We then presented an applica-
tion of the MA-DFRFT to the problem of chirp-rate estimation
of multicomponent chirp signals and showed that the resultant
chirp rate versus frequency representation is a useful tool for the
analysis of these signals.
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