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Orthogonal Modes of Frequency Modulation and the
Sturm–Liouville Frequency Modulation Model

Balu Santhanam, Senior Member, IEEE

Abstract—Sinusoidal signals and complex exponentials play a
critical role in LTI system theory in that they are eigenfunctions of
the LTI convolution operator. While processing frequency-modu-
lated (FM) waveforms using LTI systems, restrictive assumptions
must be placed on the system so that a quasi-eigenfunction approx-
imation holds. Upon deviation from these assumptions, FM wave-
forms incur significant distortion.
In this paper, a Sturm–Liouville (S-L) model for frequencymod-

ulation introduced by the author, is extended to a) study orthog-
onal modes of continuous and discrete frequency modulation and
b) to develop system theoretical underpinnings for FMwaveforms.
These FM modes have the same special connection with respect to
the FM S-L system operator, that complex exponentials have with
LTI systems and the convolution operator. The finite S-L-FM spec-
trum or transform that measures the strength of the orthogonal
FMmodes present in a FM signal, analogous to the discrete Fourier
spectrum for sinusoids, is introduced. Finally, similarities between
the orthogonal S-L-FM modes and angular Mathieu functions are
exposed, and a conjecture connecting the two is put forth.

Index Terms—Angular Mathieu functions, frequency modula-
tion, instantaneous frequency response, orthogonal FM modes,
Sturm–Liouville differential and difference equation, Sturm–Li-
ouville FM spectrum.

I. INTRODUCTION

S INUSOIDAL signals and complex exponentials play a cru-
cial role in signal processing and spectral analysis of sig-

nals with stationary frequency content. They also enjoy a spe-
cial connection with linear time-invariant (LTI) systems in that
they are eigenfunctions of the convolution operation. However,
they are unsuitable for analysis of signals such as speech, ECG,
MEG, vibrations, and seismic waveforms, that are not stationary
with respect to their frequency content.
Frequency-modulated (FM) signals in particular are a class of

non-stationary signals, where the information resides in the in-
stantaneous frequency (IF) of the signal. Traditional approaches
for the analysis of these signals such as the spectrogram are
based on assumptions of stationary frequency content over win-
dowed segments of the signal and the sinusoidal model. Other
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time-frequency tools such as the fractional Fourier transform
[12] are specific to just chirp signals.
Processing of FM signals using the AM-FM model and the

quasi-eigenfunction approximation was described in [9], [8].
The energy separation algorithm (ESA) and its discrete version
DESA were studied in [9] as a means for the demodulation of
AM-FM signals. Recent work in [11] generalizes the AM-FM
signal model to over-modulated AM-FM decompositions. In [8]
it was shown that AM-FM signals can only be approximate
eigenfunctions of LTI systems and consequently undergo har-
monic distortion when subjected to LTI filtering. Constraints on
the frequency response of a filter for minimizing the eigenfunc-
tion approximation error and bounds on the demodulation error
for AM-FM signals were developed. However, when these con-
straints are not met, this approximation incurs significant de-
modulation error.
Quasi-orthogonal chirp signals are the ingredients of a

spread spectrum communication system proposed for indoor
wireless communications [3]. Orthogonal FM transforms based
on simple permutations of the DFT phase were reported in [10]
for the purpose of concentrating the energy of an image in a
few transform domain coefficients. In recent work, a Sturm–
Liouville (S-L) model for the analysis of FM signals was pro-
posed [17]. Orthogonal modes of continuous and discrete FM
were developed using the differential or difference equation
satisfied by the FM signal. These FM modes are eigenfunctions
of the underlying S-L operator and pass undistorted through
the S-L operator.
In this paper, we consolidate and extend the S-L model for

FM, by first studying the orthogonal S-L-FM modes in depth
to develop a system theoretic framework for FM signals. We
further introduce the notion of the finite S-L-FM spectrum or
the S-L-FM transform for FM signals that is analogous to the
Fourier spectrum for sinusoidal signals. This FM spectrummea-
sures the strength of the S-L-FM modes present in a FM wave-
form. Finally, we point out the similarities between the orthog-
onal S-L-FM modes and angular Mathieu functions [23], [22]
that arise in the process of describing vibrations of a mem-
brane in elliptical coordinates. We conjecture a relationship be-
tween the two with the envisioned goal of a S-L-FM approach
to non-stationary signal analysis.

II. CONTINUOUS TIME FM

Let us first consider a sinusoidal signal of the form

This fundamental signal satisfies the constant coefficient, ho-
mogenous, second-order differential equation of the classical
harmonic oscillator:
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Sinusoids are eigenfunctions of an LTI system operator and form
the basis for LTI system theory:

where represents the complex eigenvalue. Now con-
sider a FM signal of the form1

(1)

where is the IF, and is the instantaneous phase. This
signal satisfies a second-order differential equation with time-
varying coefficients of the form

(2)

where denotes the derivative operator. In general, this system
is a linear time-varying system. In the specific case of sinusoidal
FM it becomes periodically time-varying. It is known that even
in the simple case, where the message waveform is sinusoidal,
the bandwidth of the FM signal is infinite and requires trunca-
tion. In fact, the Carson bandwidth of an FM signal retains only
spectral components with an amplitude of at least 10% of the
peak spectral amplitude [4].

A. Sturm–Liouville Differential Equation

The FM differential equation described in (2) does not cor-
respond to a self-adjoint operator. The self-adjoint form of the
FM differential equation is [1]

(3)

The self-adjoint form of the FM differential equation for the FM
signal is given by

or (4)

Comparing this to the standard form of the S-L differential equa-
tion

where is the eigenvalue and is the weight function, we
can see that (4) is a specific case of the S-L problem with the
identification

where the weight function2 is just the IF. Equation (4) can in turn
be formulated as a Sturm–Liouville system with periodicity by

1We are assuming here that is a positive and differentiable function of
time, such as a sum of cosines or sines.
2For the Sturm–Liouville framework to hold the weight function should

be strictly positive. This is not restrictive and is assumed in most FM systems.

periodic extension or as a extended S-L system through extrap-
olation of the IF, , at the boundaries of the duration of the
solution for (4) without loss of generality.

B. Orthogonal FM Modes

The first consequence of the operator being self-adjoint is
that it has real and positive eigenvalues and a full set of orthog-
onal eigenfunctions: with respect to the
weight function over the interval :

(5)

where the instantaneous phase satisfies the boundary con-
ditions

Another side-product of this orthogonality result is that the nor-
malized sequence of functions

(6)

also form an orthogonal set. It is easily seen by a simple substi-
tution of variables that the basis defined in (6) indeed
form an orthogonal sequence of functions [7]

(7)

This result is consistent with earlier work on FAM-lets3 [7],
where this sequence of functions was studied for applications
in speech/audio coding [7].
The second important implication is that complex exponen-

tial version of the FAM-lets given by

(8)

is also an eigenvector of the S-L-FM system. This is an intu-
itively satisfying result in that it is analogous to the correspon-
dence between complex exponentials and LTI systems.
Several other special functions encountered in the context of

FM communications or quantum mechanics such as Legendre,
Hermite, and Bessel functions satisfy the S-L framework for

3FAM-lets are called constant basis functions because both the carrier fre-
quencies and frequency deviations of the FM modes scale linearly, so the ratio
of their center-frequency to the Carson bandwidth is a constant. In the context of
sinusoidally modulated FM signals and computer generated music this is called
harmonic FM [4]. When the ratio of the carrier frequency to the frequency de-
viation is not rational it is called non-harmonic FM.



3488 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 7, JULY 2012

specific discrete values of the eigenvalue and the weight func-
tion [18].

C. System Theoretic Implications

There are three important consequences of expressing the FM
differential equation in the Sturm–Liouville form. The first im-
plication is that if the FM signal is input to the system

, then the output is just a scalar multiple of the input
signal. In other words, the S-L system does not introduce
any IF distortion, i.e., the IF of the input signal remains in-
variant:

(9)

where we are assuming that the sequence is absolutely
summable. The second implication is that results analogous to
LTI systems and sinusoids such as a Fourier series and Fourier
transforms can be developed for FM signals. With

, we can now decompose a FM waveform in terms
of the S-L-FM modes as [6]

(10)

where , the S-L coefficient, measures the strength of a par-
ticular FMmode in the signal, and , . The
third implication of the S-L framework is that sequence of S-L
coefficients is stationary in frequency content even though
the underlying FM signal has non-stationary frequency content.
This means that traditional signal processing concepts such as
convolution and filtering can be applied to the S-L coefficients4:

(11)

where the notation denotes the bilateral -transform of
the sequence , and denotes the complex convolution con-
tour integral. In this sense, the S-L coefficients constitute the
stationary portion of the FM signal.

III. DISCRETE TIME FM

One could in theory substitute various discrete versions of
the derivative operator in the definition of the continuous S-L
operator to yield different discrete versions of the S-L op-
erator. However, they would only serve as discrete approxima-
tions of the continuous counterpart. Instead, the approach taken
here for generating a discrete S-L-FM framework is to work di-
rectly with the difference equation satisfied by the FM signal.

4A causal eigenvalue indexing produces a outward region of convergence.

First, consider the sinusoidal sequence that
satisfies the second-order difference equation

(12)

Now consider the discrete time FM sequence given by

(13)

where the instantaneous phase and the IF are related
via a first difference

It is easily seen that this satisfies a second-order generating dif-
ference equation of the form [16]

(14)

where the time-varying coefficients are given by

(15)

First, note that the signal satisfies the same
difference equation. This again is an intuitively satisfying re-
sult in that the complex exponential version of the FM signal
given by will also be an eigenfunction of
the S-L-FM operator. It can be verified that this difference equa-
tion will reduce to (12), when . The corresponding
self-adjoint difference equation obtained by the S-L difference
equation framework [13] is given by

(16)

where the weight function , , and are given by

(17)

and the symbols and denote the one-sample backward
and forward difference operators. As in the continuous case,
the S-L operator is in general a linear time-varying system. It
should be noted here that the form of the FM difference equa-
tion and as a result the self-adjoint S-L difference equation are
sensitive to the form of discretization of the instantaneous phase

. As in the continuous case, the difference equation in (16)
can be formulated as a extended/periodic S-L system by either
a) periodic extension of the IF sequence at the bound-
aries [2], [19], which would correspond to a discrete Fourier se-
ries representation for the IF or b) extrapolation of the IF at the
boundaries under the assumption that IF varies slowly, where
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the boundary values can be repeated [9]. The solution to the dis-
crete S-L difference equation is then formulated as the solution
to a weighted, tridiagonal eigenvalue problem of the form

(18)

where is a diagonal matrix of
the positive weights and is the eigenvalue.5

The symmetric, tridiagonal, weighted eigenvalue problem is
encountered in the context of the theory of orthogonal poly-
nomials, that satisfy an associated three term recursion. These
polynomials are orthogonal with respect to a weighted inner
product. In the limiting case of the S-L operator, where the
S-L operator is circulant and Toeplitz-tridiagonal, its eigenvec-
tors are sinusoids, the IFs of the eigenvectors would correspond
to constants. The orthogonal polynomials associated with the
asymptotic S-L operator are the Tchebychev polynomials of the
second kind [20]. As the modulation depth decreases, the eigen-
vector approaches a sinusoid. Expressions for the eigenvectors
in terms of the associated orthogonal polynomials and its roots
can also be found in [20].
It should also be mentioned at this juncture that computa-

tion of the weight function and the solution to the S-L
eigenvalue problem are contingent upon knowledge of the IF
sequence, . When the exact IF is unknown, it needs to be
estimated from the FM waveform, and consequently IF estima-
tion becomes critical. Recent work on “syncrosqueezed wavelet
transforms” [5] addresses this empirical IF estimation problem.
While in theory any monocomponent demodulation algorithm
could be applied, we use the ESA [9], due to its excellent time
resolution and tracking capabilities.

A. Orthogonal FM Modes

As was seen in the continuous case, the eigenvectors of the
S-L operator

(19)

corresponding to distinct eigenvalues are orthogonal with re-
spect to the positive weight function :

(20)

The corresponding expansion of the discrete FM signal in terms
of the eigenvectors of the S-L operator is

(21)

5The S-L eigenvalue problem can be solved in various senses: exactly using
the MATLAB functions eig(A,B) or qz(A,B) or in the min-norm sense
using svd.m or gsvd.m. For situations where the signal of interest and con-
sequently the estimate of the IF, , are noisy, a generalized SVD version of
(18) is employed.

As in the continuous case, the weight function can be absorbed
into the orthogonal basis of eigenvectors to produce a normal-
ized basis:

(22)

These S-L-FM eigenvectors contain both AM and FM, and the
IF of the eigenvectors of the matrix furthermore have a form
specified by the IF of the input signal, . For example, if
we use the tridiagonal formulation of the S-L operator with no
corner correction, we obtain

(23)

where is the normalized message signal. Note that, in the
limiting case, where the input signal is a sinusoid, the eigen-
vector basis reduces to the discrete sine transform (DST)
basis, specifically the symmetric version of DST-I [14]:

(24)

Note that, unlike the continuous case, the corresponding cosine
version of the sequence, i.e., the DCT-I sequence does not con-
stitute eigenvectors of the same operator.
If, however, we use an alternative set of boundary conditions

that correspond to the addition/subtraction of 1 at the diagonal
corners of the tridiagonal form of the S-L operator, via the use
the “Toeplitz plus near Hankel,” framework described in [15]
we obtain the DCT-4/DST-4 versions of the S-L-FM modes:

(25)
However, DCT/DST versions are obtained from two distinct op-
erators. This difference being attributed to the truncation of the
infinite dimensional S-L operator to finite dimensions.
The inner-product of two spectrally distinct S-L DST-I based

FM modes is expressed as

(26)

where we are assuming that the mode indices are well sep-
arated, i.e., so that the corresponding modes
and are spectrally distinct as depicted in Fig. 5(a). Both
terms in the expression above are the inner-product of a lowpass
waveform , with spectral content around DC,
with a bandpass waveform, whose spectral content is around a
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Fig. 1. Discrete S-L problem, sinusoidal-FM: (a) sinusoidal FM signal, (b) selected S-L-FM modes using the MATLAB function eig(A,B) depicting different
number of zero crossings, (c) weight function of the discrete S-L problem, (d) S-L-FM spectrum of the input FM signal using the S-L-FM modes and weight
function depicting a single FM mode that most resembles the input FM signal in the weighted inner-product sense. Note further that most of the signal energy
resides in a few S-L coefficients around the peak.

much higher carrier frequency as embodied in the cosine term.
The lowest possible carrier frequency of with the
factor is approximately . Consequently by Parseval’s the-
orem, is approximately zero:

(27)

The inner product can then be approximated via :

(28)

where the last result follows from the same observation
that there is no spectral overlap between the lowpass term

and the bandpass term with carrier frequency
. The lowpass approximation employed here is a

common assumption in narrowband communications systems,
where the carrier frequency is much larger than the message
bandwidth [21]. For closely placed, cochannel S-L-FM modes
depicted in Fig. 5(b), the claim of orthogonality follows from
the fact that they are solutions to a S-L difference equation and
results of S-L theory apply [13].

B. Discrete Time System Theoretic Implications

The response of the discrete S-L operator to the particular FM
mode is

(29)

Suppose the input to the S-L system is a superposition of these
FM modes, then the corresponding output is

(30)

Specifically, the IF modes present in the output of the S-L op-
erator are the same IF modes present in the input to the S-L op-
erator. The ratio of the S-L coefficients is the instantaneous fre-
quency response (IFR) analogous to the conventional frequency
response of LTI systems:

(31)

where denotes the unit sample advance operator, is the
matrix of S-L eigenvectors, and is a diagonal matrix of S-L
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Fig. 2. Discrete S-L problem, triangular frequency modulation: (a) FM signal; (b) selected eigenvectors of the discrete S-L operator using a decomposition
for the generalized eigenvalue problem; (c) weight function associated with the discrete S-L operator; and (d),(e) S-L-FM spectrum computed using the orthogonal
FM modes and weight function , and the corresponding discrete fractional Fourier spectrum of the FM signal.

weights. Furthermore, the generalized Fourier coefficient se-
quences and are connected via circular convolution
through

(32)

where here denotes the inverse DFT matrix. This relation-
ship is significant in that conventional LTI system theory can
be applied to the generalized Fourier coefficients and ,
despite the underlying waveforms and being FM sig-
nals. Specifically, the quantity

(33)

is formally defined as the finite S-L-FM spectrum6 or FM trans-
form of the FM signal . This concept is analogous to the dis-
crete Fourier spectrum for sinusoidal signals, except in this case
the spectrum indicates the strength of a particular FM mode in
the signal.

IV. DISCUSSION OF RESULTS

Figs. 1, 2, and 4 describe the application of the discrete S-L
approach to three different signals: (a) sinusoidally modulated
FM signal with a carrier-to-frequency deviation (CR/FD) ratio
of 25 and a carrier-to-information bandwidth (CR/IB) ratio of
37.5 and a duration of samples, where the MATLAB

6The non-causal definition of the spectrum is a direct result of the non-causal
formulation of the S-L operator that is defined with a one sample noncausal
shift.

function eig(A,B) is employed, (b) FM signal with a trian-
gular IF, with , , and , where
the MATLAB function qz.m is employed, and (c) FM signal
with a triangular IF in white Gaussian noise SNR 25 dB ,
where the generalized SVD function in MATLAB gsvd.m is
employed. Note that for the triangular IF example in Fig. 2,
the carrier frequency of the input FM signal is chosen to be
an integer multiple of so that it coincides with the car-
rier frequency of one of the normal FM modes. This translates
to a sharp peak at the specific mode where the carrier frequen-
cies match as described in the S-L-FM spectrum in Fig. 2(d).
Fig. 2(e) compares the S-L FM spectrum which is a one dimen-
sional spectrum to the MA-CDFRFT spectrum that is a two di-
mensional spectrum [12]. The distinguishing characteristic of
the S-L approach from the discrete fractional Fourier transform
based approaches is that the IF of the eigenvectors in the S-L
approach are of the same form as the IF of the FM signal being
analyzed and not specific to just chirps.
Fig. 3(a) and (b) describes the center-frequencies and the in-

verse normalized frequency deviations of the FM modes for
sinusoidal-FM signal with a carrier frequency of , a
CR/FD of 25, a CR/IB of 37.5, and duration sam-
ples. Fig. 3(b) describes the relationship of the inverse nor-
malized frequency deviations to the symmetric-DST expression

, a result used later in Section V. Modulation indices
larger than 1 are considered wideband, while indices smaller
than 1 are considered narrowband. Fig. 3(c) describes the fre-
quency modulation index for selected FM modes indicating the
presence of both narrowband and wideband modes. S-L eigen-
vectors with more zero-crossings correspond to high-frequency
FM modes, while the eigenvectors with fewer zero-crossings
correspond to lowpass FMmodes. While the carrier frequencies
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Fig. 3. Carrier spacing and spread properties of S-L-FM modes: (a) center frequency of selected modes of the discrete S-L-FM operator for the first sinusoidally
modulated example indicating a symmetric-DST type linear spacing as indicated in (24); (b) inverse of the normalized frequency deviations of selected S-L-FM
modes depicting a perfect symmetric-DST type sinusoidal fit as indicated in (38); (c) normalized frequency modulation indices for specific FM modes for the
sinusoidal FM example depicting the presence of both narrowband and wideband FM modes relative to the input signal.

Fig. 4. S-L-FM mode decomposition in AWGN using the generalized SVD version of (18): (a) noisy FM signal with SNR 25 dB; (b) selected S-L-FM modes
of the generalized SVD solution; (c) discrete S-L weight function; and (d) S-L-FM spectrum of the noisy FM signal depicting the presence of a few dominant
modes.

of the FMmodes are linearly spaced apart as with the FAM-lets,
the frequency deviations of the modes are not linearly spaced
apart, but are symmetric about a central mode as depicted in
Fig. 3(b) and (c).
Fig. 4 describes application of the S-L-FM approach to a

noisy version (AWGN) of the triangular FM example in Fig. 2
at a SNR of 25 dB. The S-L-FM modes are obtained from the
generalized SVD version of the tridiagonal system. Fig. 4(b) de-
picts two of the S-L-FM modes obtained from the SVD system,
while Fig. 4(c) depicts the corresponding weight function .
Fig. 4(d) depicts the S-L FM spectrum computed using the com-
puted modes and . Notice the difference between the largest
peak and its nearest neighbor is around 30 dB, indicating that the
S-L-FM modes provide significant energy compaction in just a

few modes. The operation of truncation, i.e., retaining just the
S-L coefficients above a certain power threshold dependent on
the SNR, therefore is equivalent to applying a bandpass filter
with a ideal brick-wall IFR on the noisy S-L coefficients. This
result further implies that a sufficient reliability of the initial
IF estimate is required for a reliable estimation of the S-L-FM
modes.
Fig. 6(a) studies the ESA frequency demodulation error be-

tween the IF of the mode corresponding to the S-L spectral peak
and the IF of the input FM signal versus the S-L system size for
the sinusoidal example. As the size of the S-L system increases,
the error decreases indicating that one of the FM modes will
eventually capture the input FM signal. Fig. 6(b) depicts the fre-
quency demodulation error when the input signal is one of the
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Fig. 5. Spectra of S-L-FM modes from sinusoidal-FM example: (a) Fourier spectra of well separated FM modes ( 20, 120, 200) depicting non-overlapping
spectral support and orthogonality implied by Parseval’s theorem and (b) spectra of adjacent S-L-FM modes with indices ( 140, 141) depicting overlapping
spectral support and yet from S-L theory these S-L-FM modes are orthogonal with respect to the weighted inner-product.

Fig. 6. Effect of parameters: (a) RMS ESA frequency demodulation error percentage for different S-L operator sizes and (b) RMS frequency demodulation error
percentage for different SNRs in AWGN averaged over 100 experiments for a S-L operator size of .

S-L-FM modes averaged over 100 experiments, indicating that
a fair amount of SNR is needed for reliable estimation of the
S-L parameters.

V. ORTHOGONAL FM MODES AND ANGULAR
MATHIEU FUNCTIONS

Angular Mathieu functions (AMF) denoted and
are solutions of the angular part of the Helmoltz

differential equation in elliptical coordinates [23], [22]

(34)

The elliptical variable takes the range of and plays the
role of a angular frequency [23], while the parameter is con-
nected to the deviation from the classical sinusoidal harmonic
oscillator. In this section, since analytical expressions for the
AMFs are not available, we take the approach of pointing out
the similarities between the S-L-FM modes and the AMFs in
the context of a sinusoidally modulated FM signal of duration

samples, with a carrier frequency , and with
, , as illustrated in Fig. 7. The envisioned

goal behind studying AMFs and their connection to the S-L-FM
modes is to enable development of a general S-L-FM analysis
approach that does not require knowledge of the input signals IF.

A. Negative Parameter

For IFs with negative frequency deviations, the FM modes
from the S-L framework exhibit the same symmetry or anti-

symmetry about their mid-point that the cosine and sine elliptic
AMFs do

(35)

This is illustrated in Fig. 7(a) and (b), where the S-L-FM modes
for negative frequency deviation values are specific modes are
plotted. This symmetry or anti-symmetry for a negative fre-
quency deviation parameter translates to S-L-FM modes with
a IF with the same carrier frequency but a negative frequency
deviation as illustrated in Fig. 7(c). This result is consistent with
the framework in [23] and the results in Fig. 7(g) that imply that
the parameter of the AMFs is a odd function of frequency de-
viation of the modes.

B. Asymptotic Properties

The S-L-FMmodes also satisfy the same asymptotic behavior
as the AMFs in that in the limit as the frequency deviation goes
to zero, we obtain sinusoids

(36)

This property is illustrated in Fig. 7(f), where the first FM
mode is plotted for different frequency deviation parameters,
depicting the change from a FM signal to a sinusoid.
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Fig. 7. S-L-FM modes and AMFs: (a),(b),(c) orthogonal FM modes from the S-L system for positive and negative frequency deviation parameters and the cor-
responding ESA IF estimates of the th mode for both positive and negative frequency deviations, depicting properties identical with angular Mathieu
functions or for negative parameters; (d),(e) ESA IF estimates of AMFs evaluated using the framework and MATLAB functions in [23]
for different parameters depicting sinusoidal FM; (f) first orthogonal FM mode for different frequency deviation depicting that asymptotically as the frequency
deviation goes to zero, the FM modes become purely sinusoidal, as is the case with Mathieu functions; and (g) ESA IF estimates of the th mode for both
positive and negative values of .

C. Sinusoidal Frequency Modulation

Fig. 7(c) and (d) depicts the IFs of selected AMFs obtained
using the approach in [23] and the associated MATLAB func-
tions for different values of the parameter. Notice that the
AMFs are sinusoidally modulated and that a change in the pa-
rameter results in a increase in the frequency deviation of the
underlying IFs. This result is very similar to results seen with the
S-L-FM modes, where the modes are also frequency modulated
with an IF of the same form as the input FM signal. Furthermore,
the AMFs obtained through the framework in [23] also have
the same linear spacing of mode center-frequencies of as de-
picted in the ESA IF estimates of selected AMFs in Fig. 7(d)
and (e), a result similar to that seen in the S-L-FM modes. In
addition, the S-L-FM modes exhibit simultaneous AM and FM,
a property seen in the approximate solutions to the Mathieu dif-
ferential equation [22].

D. Conjecture Relating S-L-FM Modes and AMFs

Effectively these similarities imply that the carrier-spacing of
the FM modes is related to the parameter and the frequency
deviation of the FM modes is related to the parameter of the
AMFs. These striking similarities combined with the results
from Fig. 3(b) lead us to the conjecture that the S-L-FM modes
are contained in the span of a finite dimensional subset of AMFs
for specific discrete values of the parameters:

(37)

For the symmetric DST based S-L-FM modes, this becomes

(38)
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The result that the AMFs are sinusoidally modulated, i.e., have
a sinusoidal IF, and yet are able to represent a general FMwave-
form as depicted in Fig. 7(c) and (d) is consistent with the ESA
framework in [8] and [9], which allows for any IF that can be
represented through a finite Fourier series of cosines/sines:

(39)

except at discontinuity points, where the estimated IF goes
through the mid-point of the discontinuity.

VI. CONCLUSION

We have extended and expanded on the S-L framework for
continuous and discrete FM introduced in [17]. Orthogonal FM
modes arising from the eigenfunctions or eigenvectors of the
S-L-FM operator are shown to undergo no IF distortion when
subjected to the S-L-FM system. A generalized Fourier series
representation of a FMwaveform in terms of the S-L-FMmodes
was presented and the notion of the finite S-L-FM spectrum that
describes the strength of the FMmodes prevalent in amodulated
signal was defined. Simulation results indicate that the S-L-FM
modes provide significant energy compaction by representing a
FM waveform with a few transform coefficients.
These S-L FM modes furthermore, reduce to the standard

Fourier basis or the symmetric sine basis, asymptotically when
the modulation strength becomes negligible. More significantly
it was also shown that S-L coefficients of a FM signal with re-
spect to the S-L-FM modes are stationary even though the un-
derlying signal has nonstationary frequency content. The impli-
cation is that standard system theory results such as convolution,
filtering, and the DTFT can be applied to the S-L coefficients.
In the continuous case, the S-L-FM modes reduce to the better
known FAM-let basis, while in the discrete case, the striking
similarities between the S-L-FM modes and AMFs were exam-
ined and it was conjectured that the S-L-FM modes lie in the
span of a finite dimensional subset of the AMFs for specific
discrete values of the underlying parameters. Sliding window
versions of the S-L-FM approach suitable for general non sta-
tionary signal analysis can now be envisioned and are being de-
veloped.
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